精英家教网 > 高中数学 > 题目详情
已知{an}是正数组成的数列,a1=1,且点(
an
an+1)(n∈N*)
在函数y=x2+2的图象上.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+2an,求数列{bn}的通项公式.
分析:(1)由已知得an+1-an=2,a1=1,所以数列{an}是以1 为首项,公差为2的等差数列,由此能求出an
(2)由an=2n-1,知bn+1-bn=22n-1.bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=22n-3+22n-5+…+23+21+1,由此能求出数列{bn}的通项公式.
解答:解:(1)由已知得an+1=an+2,
即an+1-an=2…(3分)
又a1=1,所以数列{an}是以1 为首项,公差为2的等差数列
故an=1+(n-1)×2=2n-1…(4分)
(2)由(1)知an=2n-1,从而bn+1-bn=22n-1…(6分)
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1…(8分)=22n-3+22n-5+…+23+21+1…(10分)
=
2-22n-1
1-4
+1=
1
6
(4n+2)
…(12分)
点评:本题考查数列的通项公式的求法,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•眉山二模)设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,c1,c2,…,cn是b1,b2,…,bn的任一排列,我们称S=a1c1+a2c2+a3c3+…+ancn为两组实数的乱序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1为反序和,S2=a1b1+a2b2+a3b3+…+anbn 为顺序和.根据排序原理有:S1≤S≤S2即:反序和≤乱序和≤顺序和.给出下列命题:
①数组(2,4,6,8)和(1,3,5,7)的反序和为60;
②若A=
x
2
1
+
x
2
2
+…+
x
2
n
,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正数,则A≤B;
③设正实数a1,a2,a3的任一排列为c1,c2,c3
a1
c1
+
a2
c2
+
a3
c3
的最小值为3;
④已知正实数x1,x2,…,xn满足x1+x2+…+xn=P,P为定值,则F=
x
2
1
x2
+
x
2
2
x3
+…+
x
2
n-1
xn
+
x
2
n
x1
的最小值为
P
2

其中所有正确命题的序号为
①③
①③
.(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2012年四川省眉山市高考数学二模试卷(理科)(解析版) 题型:解答题

设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,c1,c2,…,cn是b1,b2,…,bn的任一排列,我们称S=a1c1+a2c2+a3c3+…+ancn为两组实数的乱序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1为反序和,S2=a1b1+a2b2+a3b3+…+anbn 为顺序和.根据排序原理有:S1≤S≤S2即:反序和≤乱序和≤顺序和.给出下列命题:
①数组(2,4,6,8)和(1,3,5,7)的反序和为60;
②若A=++…+,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正数,则A≤B;
③设正实数a1,a2,a3的任一排列为c1,c2,c3++的最小值为3;
④已知正实数x1,x2,…,xn满足x1+x2+…+xn=P,P为定值,则F=++…++的最小值为
其中所有正确命题的序号为    .(把所有正确命题的序号都填上)

查看答案和解析>>

同步练习册答案