精英家教网 > 高中数学 > 题目详情
设函数f(x)=的最小值为-1,则实数a的取值范围是( )
A.
B.
C.
D.[-1,+∞)
【答案】分析:根据函数f(x)=的最小值为-1,而f()==-1,可得-+a≥-1,由此解得a的范围.
解答:解:由于函数f(x)=的最小值为-1,而f()==-1,∴-+a≥-1,解得a≥-
故选A.
点评:本题主要考查对数函数的单调性和特殊点,判断-+a≥-1,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

先解答(1),再通过类比解答(2):
(1)①求证:tan(x+
π
4
)=
1+tanx
1-tanx
;②用反证法证明:函数f(x)=tanx的最小正周期是π;
(2)设x∈R,a为正常数,且f(x+a)=
1+f(x)
1-f(x)
,试问:f(x)是周期函数吗?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,满足f(1)=0
(1)若c=1,解不等式f(x)>0
(2)若a>b>c,设方程f(x)=0的最小根为x0,确定a,c的符号并求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=-sin(kπ+x)(k∈Z)是奇函数;
②函数f(x)=tanx的图象关于点(
2
,0)(n∈Z)对称;
③函数f(x)=|sinx|的最小正周期为π;
④设x是第二象限角,则tan
x
2
>cot
x
2
,且sin
x
2
>cos
x
2

其中正确的命题是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市渝中区巴蜀中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

设向量=(cosωx,2cosωx),=(2cosωx,sinωx)(x∈R,ω>0),已知函数f(x)=+1的最小正周期是
(1)求ω的值;
(2)求f(x)的最大值,并求出f(x)取得最大值的x的集合.

查看答案和解析>>

同步练习册答案