精英家教网 > 高中数学 > 题目详情
14、幂函数f(x)=xn(n∈Z)具有性质f2(1)+f2(-1)=2[f(1)+f(-1)-1],判断函数f(x)的奇偶性.
分析:先化简题目中的等式,分n为奇数和n为偶数2种情况讨论,最后确定n一定为偶数,从而得出幂函数f(x)=xn(n∈Z)是个偶函数.
解答:解:由题意得:(1n2+((-1)n2=2[1n+(-1)n-1],2=2[1n+(-1)n-1]①,
当n为奇数时,①不成立,当n为偶数时,①恒成立,故n一定为偶数,
∴幂函数f(x)=xn(n∈Z)是个偶函数.
点评:本题考查幂函数的性质、以及函数奇偶性的判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我们把y=xm(m∈Q)叫做幂函数.幂函数y=xm(m∈Q)的一个性质是:当m>0时,在(0,+∞)上是增函数;当m<0时,在(0,+∞)上是减函数.设幂函数f(x)=xn(n≥2,n∈N).
(1)若gn(x)=f(x)+f(a-x),x∈(0,a),证明:
an2n-1
gn(x)<an

(2)若gn(x)=f(x)-f(x-a),对任意n≥a>0,证明:gn′(n)≥n!a.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果幂函数f(x)=xn的图象经过点(2,
2
),则f(4)的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xn满足3f(2)=f(4),则f(
2
)
=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若幂函数f(x)=xn的图象过点(2,8),则f(x)=
 

查看答案和解析>>

同步练习册答案