精英家教网 > 高中数学 > 题目详情
14.命题“?x0∈R,${x_0}^2-{x_0}-1>0$”的否定是(  )
A.?x∈R,x2-x-1≤0B.?x∈R,x2-x-1>0
C.?x0∈R,${x_0}^2-{x_0}-1≤0$D.?x0∈R,${x_0}^2-{x_0}-1≥0$

分析 利用特称命题的否定是全称命题,写出结果即可.

解答 解:因为特称命题的否定是全称命题,
所以命题“?x0∈R,${x_0}^2-{x_0}-1>0$”的否定为:?x∈R,x2-x-1≤0.
故选:A

点评 本题考查命题的否定,特称命题与全称命题的否定关系,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求下列定积分:
(1)$\int_1^4{\sqrt{x}}(1-\sqrt{x})dx$;
(2)$\int_1^2{\;}({2^x}+\frac{1}{x})dx$
(3)$\int_0^{\frac{Π}{3}}{\;}(sinx-sin2x)dx$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等差数列{an}中,已知a4=-15,公差d=3,则数列{an}的前n项和Sn的最小值为-108.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,四边形ABCD为矩形,AB⊥BP,M为AC的中点,N为PD上一点.
(1)若MN∥平面ABP,求证:N为PD的中点;
(2)若平面ABP⊥平面APC,求证:PC⊥平面ABP.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xOy中,圆O:x2+y2=4与y轴的正半轴交于点A,以A为圆心的圆x2+(y-2)2=r2(r>0)与圆O交于B、C两点.
(1)求$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范围;
(2)设P是圆O上异于B、C的任一点,直线PB、PC与y轴分别交于点M、N,求S△POM•S△PON的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若双曲线$E:\frac{x^2}{9}-\frac{y^2}{16}=1$的左、右焦点分别为F1,F2,点P在双曲线E上,且PF1=3,则PF2等于9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ex-a(x+1)(a∈R)(e是自然对数的底数).
(1)若f(x)的图象与x轴相切,求实数a的值;
(2)当0≤a≤1时,求证:f(x)≥0;
(3)求证:对任意正整数n,都有(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)…(1+$\frac{1}{{2}^{n}}$)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.锐角三角形ABC中,sin(A+B)=$\frac{3}{5}$,sin(A-B)=$\frac{1}{5}$,设AB=3,则AB边上的高为2+$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求已知点P(5,0)及圆C:x2+y2-4x-8y-5=0,若直线l过点P且被圆C截得的弦AB长是8,则直线 l的方程是x-5=0或7x+24y-35=0.

查看答案和解析>>

同步练习册答案