精英家教网 > 高中数学 > 题目详情
(坐标系与参数方程选做题)已知在平面直角坐标系xoy中,圆C的参数方程为
x=
3
+3cosθ
y=1+3sinθ
,(θ为参数),以ox为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
6
)
=0,则圆C截直线l所得的弦长为
4
2
4
2
分析:首先把给出的圆的参数方程和直线的极坐标方程化为普通方程,然后运用数形结合即可解得答案.
解答:解:由
x=
3
+3cosθ
y=1+3sinθ
,得
x-
3
=3cosθ
y-1=3sinθ
,两式平方相加得:(x-
3
)2+(y-1)2=9
 ①,
ρcos(θ+
π
6
)=0
,得:ρ(cosθcos
π
6
-sinθsin
π
6
)=0
,即
3
x-y=0
 ②,
如图
圆心C(
3
,1)
到直线
3
x-y=0
的距离为
|
3
×
3
-1|
(
3
)2+(-1)2
=1

所以直线L被圆C所截得的弦长为|AB|=2
32-12
=4
2

故答案为4
2
点评:本题考查了简单曲线的极坐标方程和圆的参数方程,考查了数形结合的解题思想,考查了灵活处理和解决问题的能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)以原点为极点,x轴的正半轴为极轴,单位长度一致的坐标系下,已知曲线C1的参数方程为
x=2cosθ+3
y=2sinθ
(θ为参数),曲线C2的极坐标方程为ρsinθ=a,则这两曲线相切时实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为
2
π
4
2
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)
曲线
x=t
y=
1
3
t2
(t为参数且t>0)与直线ρsinθ=1(ρ∈R,0≤θ<π)交点M的极坐标为
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(坐标系与参数方程选做题)已知在极坐标系下,点A(1,
π
3
),B(3,
3
),O是极点,则△AOB的面积等于
3
3
4
3
3
4

(2)(不等式选做题)关于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系中,已知点P(2,
π3
),则过点P且平行于极轴的直线的极坐标方程为
 

查看答案和解析>>

同步练习册答案