【题目】数列{an}首项a1=1,前n项和Sn与an之间满足an=![]()
(1)求证:数列{
}是等差数列
(2)求数列{an}的通项公式
(3)设存在正数k,使(1+S1)(1+S2)…(1+Sn)≥k
对于一切n∈N*都成立,求k的最大值.
科目:高中数学 来源: 题型:
【题目】已知数列
满足
,
(
是自然对数的底数),且
,令
(
).
(1)证明:
;
(2)证明:
是等比数列,且
的通项公式是
;
(3)是否存在常数
,对任意自然数
均有
成立?若存在,求
的取值范围,否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位做一次采访,则被采访者都关注了此次大阅兵的概率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C1:
, 曲线C2:
,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. 并在两种坐标系中取相同的单位长度。
(1)写出曲线C1,C2的极坐标方程;
(2)在极坐标系中,已知点A是射线l:
与C1的交点,点B是l与C2的异于极点的交点,当
在区间
上变化时,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,圆
,点
,过
的直线
与圆
交于点
,过
做直线
平行
交
于点
.
(1)求点
的轨迹
的方程;
(2)过
的直线与
交于
、
两点,若线段
的中点为
,且
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是椭圆
的左、右焦点,离心率为
,
是平面内两点,满足
,线段
的中点
在椭圆上,
周长为12.
(1)求椭圆
的方程;
(2)若与圆
相切的直线
与椭圆
交于
,求
(其中
为坐标原点)的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com