3£®ÒÑÖª¡÷ABCÖУ¬½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬a=$\sqrt{2}$£¬ÏòÁ¿$\overrightarrow{m}$=£¨-1£¬1£©£¬$\overrightarrow{n}$=£¨cosBcosC£¬sinBsinC-$\frac{\sqrt{2}}{2}$£©£¬ÇÒ$\overrightarrow{m}$¡Í$\overrightarrow{n}$£®
£¨¢ñ£©ÇóAµÄ´óС£»
£¨¢ò£©µ±sinB+cos£¨$\frac{7¦Ð}{12}$-C£©È¡µÃ×î´óֵʱ£¬Çó½ÇBµÄ´óС£®

·ÖÎö £¨¢ñ£©ÀûÓÃÒÑÖªÏòÁ¿µÄ×ø±ê½áºÏ$\overrightarrow{m}$¡Í$\overrightarrow{n}$ÁÐʽ£¬ÔÙ½áºÏÈý½ÇÐÎÄڽǺͶ¨ÀíÇóµÃAµÄ´óС£»
£¨¢ò£©ÓÉ£¨¢ñ£©ÖÐÇóµÃµÄAÖµ£¬°ÑsinB+cos£¨$\frac{7¦Ð}{12}$-C£©»¯Îª½öº¬ÓÐBµÄÈý½Çº¯Êýʽ£¬¿ÉµÃµ±sinB+cos£¨$\frac{7¦Ð}{12}$-C£©È¡µÃ×î´óֵʱ½ÇBµÄ´óС£®

½â´ð ½â£º£¨¢ñ£©¡ß$\overrightarrow{m}$¡Í$\overrightarrow{n}$£¬¡à$-cosBcosC+sinBsinC-\frac{\sqrt{2}}{2}=0$£¬
¼´$cos£¨B+C£©=-\frac{\sqrt{2}}{2}$£¬
¡ßA+B+C=¦Ð£¬¡àcos£¨B+C£©=-cosA£¬
¡àcosA=$\frac{\sqrt{2}}{2}$£¬A=$\frac{¦Ð}{4}$£»
£¨¢ò£©ÓÉ$A=\frac{¦Ð}{4}£¬C=\frac{3¦Ð}{4}-B$£¬
¹Ê$sinB+cos£¨\frac{7¦Ð}{12}-C£©=sinB+cos£¨B-\frac{¦Ð}{6}£©$
=$\frac{3}{2}sinB+\frac{\sqrt{3}}{2}cosB=\sqrt{3}sin£¨B+\frac{¦Ð}{6}£©$£®
ÓÉ$B¡Ê£¨0£¬\frac{3¦Ð}{4}£©$£¬
¹Ê$\sqrt{3}sin£¨B+\frac{¦Ð}{6}£©$È¡×î´óֵʱ£¬$B=\frac{¦Ð}{3}$£®

µãÆÀ ±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬¿¼²éÁËÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Óã¬ÊÇ»ù´¡µÄ¼ÆËãÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Å×ÎïÏßy2=3x¹ØÓÚÖ±Ïßy=x¶Ô³ÆµÄÅ×ÎïÏß·½³ÌΪ£¨¡¡¡¡£©
A£®y2=$\frac{1}{3}$xB£®x2=3yC£®x2=$\frac{1}{3}$yD£®y2=3x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÕý·½ÐεÄÖÐÐÄΪ£¨-1£¬0£©£¬ÆäÖÐ-Ìõ±ßËùÔÚµÄÖ±Ïß·½³ÌΪx+3y-2=0£®ÇóÆäËûÈýÌõ±ßËùÔÚµÄÖ±Ïß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¡÷ABCµÄ¶¥µãÊÇA£¨0£¬6£©£¬B£¨2£¬0£©£¬C£¨4£¬4£©£®
£¨¢ñ£©Çó¾­¹ýÁ½±ßABºÍACÖеãµÄÖ±Ïߵķ½³Ì£»
£¨¢ò£©ÇóBC±ßµÄ´¹Ö±Æ½·ÖÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}+ax+\frac{a}{4}£¬£¨x£¼1£©}\\{{{a}^{x}£¬x¡Ý1£©}^{\;}}\end{array}\right.$Èôy=f£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[2£¬4]B£®£¨2£¬4£©C£®£¨2£¬+¡Þ£©D£®[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÉèÊýÁÐ{an}Êǹ«²îd£¼0µÄµÈ²îÊýÁУ¬SnΪÆäǰnÏîºÍ£¬ÈôS6=5a1+10d£¬ÔòSnÈ¡×î´óֵʱ£¬n=5»ò6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Éè${x^5}={a_0}+{a_1}£¨2-x£©+{a_2}{£¨2-x£©^2}+¡­+{a_5}{£¨2-x£©^5}$£¬ÄÇô$\frac{{{a_0}+{a_2}+{a_4}}}{{{a_1}+a{\;}_3}}$µÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{122}{121}$B£®$-\frac{61}{60}$C£®-$\frac{244}{241}$D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÓÃÒ»ÕÅÕý·½Ðεİü×°Ö½°ÑÒ»¸öÀⳤΪ1µÄÕý·½ÌåÍêÈ«°üס£¬ÒªÇó²»Äܽ«Õý·½ÐÎֽ˺¿ª£¬ÔòËùÐè°ü×°Ö½µÄ×îÐ¡Ãæ»ýΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼ºÖªÖ±Ïßl¾­¹ý¶¨µã£¨0£¬1£©£¬ÇúÏßCµÄ·½³ÌÊÇy2=4x£¬ÊÔÌÖÂÛÖ±ÏßlÓëCµÄ½»µã¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸