精英家教网 > 高中数学 > 题目详情
若椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,则双曲线
x2
a2
-
y2
b2
=1的离心率为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,可得
a2-b2
a2
=
1
2
,即a2=2b2,利用双曲线
x2
a2
-
y2
b2
=1的离心率
a2+b2
a2
,即可得出结论.
解答: 解:∵椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2

a2-b2
a2
=
1
2

∴a2=2b2
∴双曲线
x2
a2
-
y2
b2
=1的离心率
a2+b2
a2
=
3

故答案为:
3
点评:本题考查椭圆、双曲线的性质,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥PE=3中,AE=
5
,PA=
PE2-AE2
=2∥GH⊥PC,H,PC⊥DE,PC⊥,平面HDG平面PC⊥DG.
(Ⅰ)求证:平面∠GHD平面A-PC-D;
(Ⅱ)若直线PCA~与平面GCH所成的角的正弦值为
PA
GH
=
PC
GC
,求二面角GC=
CE2-EG2
=
6
5
5
的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
1
2
x2-bx,曲线y=f(x)在点(1,f(1))处的切线的斜率为0.
(1)求b的值;
(2)设g(x)=x-
1
2
x2,若存在x∈[1,+∞),使得af(x)+(2a-1)g(x)<
a
a-1
(a∈R且a≠1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系xOy中的一个椭圆,它的中心在原点,椭圆上一动点到焦点的最长距离是2+
3
,最短距离是2-
3

(1)求该椭圆的标准方程;
(2)若椭圆的焦点在y轴上,直线l:y=2x+m截椭圆所得的弦的中点为M,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=tx2+4tx+1(t>5),若x1>x2,x1+x2=1-t,则(  )
A、f(x1)>f(x2
B、f(x1)<f(x2
C、f(x1)=f(x2
D、f(x1),f(x2)大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
4
=1,过点p(1,1)的直线l与双曲线只有一个公共点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,等比数列{an}的通项公式an=3(
1
2
n-1,且bn=a3n-2+a3n-1+a3n,求证:{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数y=-
1
2
(x-2)2+1在区间(2,+∞)内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面是关于公差d>0的等差数列{an}的四个命题:
p1:?a1∈R,数列{an}是递增数列;
P2:?a1∈R,数列{nan}是递增数列;
p3:?a1∈R,使得数列{n2+an]是递减数列;
p4:?a1∈R,使得数列{
an
n
]是递减数列;
其中真命题为(  )
A、p1,p2
B、p3,p4
C、p2,p3
D、p1,p4

查看答案和解析>>

同步练习册答案