精英家教网 > 高中数学 > 题目详情

有驱虫药1618和1573各3杯,从中随机取出3杯称为一次试验(假定每杯被取到的概率相等),将1618全部取出称为试验成功.
(1)求恰好在第3次试验成功的概率(要求将结果化为最简分数).
(2)若试验成功的期望值是2,需要进行多少次相互独立重复试验?

(1)试验一次就成功的概率为; (2)4.

解析试题分析:(1) 从6杯中任选3杯,不同选法共有种,而选到的3杯都是1618的选法只有1种,由古典概型概率的求法可得试验一次就成功的概率为.恰好在第3次试验成功相当于前两次试验都没成功,第3次才成功.由于成功的概率为,所以一次试验没有成功的概率为,三次相乘即得所求概率.(2)该例是一个二项分布,二项分布的期望是,解此方程即可得次数.
试题解析:(1)从6杯中任选3杯,不同选法共有种,而选到的3杯都是1618的选法只有1种,从而试验一次就成功的概率为.恰好在第3次试验成功相相当于前两次试验都没成功,第3次才成功,故概率为.
(2)假设连续试验次,则试验成功次数,从而其期望为,再由可解出.
考点:1、古典概型;2、二项分布及其期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于cm和cm之间,将测量结果按如下方式分成八组:第一组[,),第二组[,),…,第八组[,],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人.
(1)求第七组的频率并估计该校800名男生中身高在cm以上(含cm)的人数;
(2)从第六组和第八组的男生中随机抽取两名男生,记他们的身高分别为,事件{},求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为防止山体滑坡,某地决定建设既美化又防护的绿化带,种植松树、柳树等植物.某人一次种植了n株柳树,各株柳树成活与否是相互独立的,成活率为p,设ξ为成活柳树的株数,数学期望E(ξ)=3,标准差σ(ξ)为.
(1)求n、p的值并写出ξ的分布列;
(2)若有3株或3株以上的柳树未成活,则需要补种,求需要补种柳树的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2只正品,每次取一个,取出后不放回,直到取出2个正品为止.设X为取出的次数,求X的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现有甲、乙、丙三人参加某电视台的应聘节目《非你莫属》,若甲应聘成功的概率为,乙、丙应聘成功的概率均为,(0<t<2),且三个人是否应聘成功是相互独立的.
(1)若乙、丙有且只有一个人应聘成功的概率等于甲应聘成功的概率,求t的值;
(2)记应聘成功的人数为,若当且仅当为=2时概率最大,求E()的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)表示开始第4次发球时乙的得分,求的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(1)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:

品种甲
 
403
 
397
 
390
 
404
 
388
 
400
 
412
 
406
 
品种乙
 
419
 
403
 
412
 
418
 
408
 
423
 
400
 
413
 
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:

评估的平均得分



全市的总体交通状况等级
不合格
合格
优秀
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;
(2)用简单随机抽样方法从这条道路中抽取条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标的概率.

查看答案和解析>>

同步练习册答案