精英家教网 > 高中数学 > 题目详情
(2012•邯郸模拟)在数列{an}中,已知an≥1,a1=1且an+1-
a
 
n
=
2
an+1+an-1
(n∈N*)

(I)求数列{an}的通项公式;
(II)令cn=(2an-1)2Sn=
1
c1c2
+
1
c2c3
+…+
1
cncn+1
,若Sn<k恒成立,求k的取值范围.
分析:(I)因为an+1-an=
2
an+1+an-1
,所以(an+1-
1
2
)2-(an-
1
2
)2=2
,令bn=(an-
1
2
)2
,则bn+1-bn=2,由此能求出数列{an}的通项公式.
(II)因为cn=(2an-1)2=8n-7,所以
1
cncn+1
=
1
(8n-7)(8n+1)
=
1
8
(
1
8n-7
-
1
8n+1
)
,故Sn=
1
c1c2
+
1
c2c3
+…+
1
cncn+1
=
1
8
(1-
1
9
+
1
9
-
1
17
+…+
1
8n-7
-
1
8n+1
)
=
1
8
(1-
1
8n+1
)<
1
8
,由Sn<k恒成立,能求出k的取值范围.
解答:解:(I)因为an+1-an=
2
an+1+an-1

所以an+12-an2-an+1+an=2,
(an+1-
1
2
)2-(an-
1
2
)2=2
,--(2分)
bn=(an-
1
2
)2

bn+1-bn=2,
故{bn}是以
1
4
为首项,2为公差的等差数列.
所以bn=
1
4
+2(n-1)=
8n-7
4
,--(4分)
因为an≥1,故an=
1+
8n-7
2
.--(6分)
(II)因为cn=(2an-1)2=8n-7,
所以
1
cncn+1
=
1
(8n-7)(8n+1)
=
1
8
(
1
8n-7
-
1
8n+1
)
,--(8分)
所以Sn=
1
c1c2
+
1
c2c3
+…+
1
cncn+1
=
1
8
(1-
1
9
+
1
9
-
1
17
+…+
1
8n-7
-
1
8n+1
)

=
1
8
(1-
1
8n+1
)<
1
8
,--(10分)
因为Sn<k恒成立,
k≥
1
8
.--(12分)
点评:本题考查数列的通项公式的求法和求实数k的取值范围,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•邯郸模拟)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若?x∈R,f(x)<0或g(x)<0,则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸模拟)四棱锥P-ABCD的五个顶点都在一个球面上,其三视图如图所示,E、F分别是棱AB、CD的中点,直线EF被球面所截得的线段长为2
2
,则该球表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸模拟)已知函数f(x)=2cosx•sin(x-
π
6
)-
1
2
].
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c且c=
3
,角C满足f(C)=0,若sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸模拟)已知两定点E(-2,0),F(2,0),动点P满足
PE
PF
=0
,由点P向x轴作垂线段PQ,垂足为Q,点M满足
PM
=
MQ
,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(0,-2)作直线l与曲线C交于A、B两点,点N满足
ON
=
OA
+
OB
(O为原点),求四边形OANB面积的最大值,并求此时的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸模拟)在空间给出下面四个命题(其中m、n为不同的两条直线,α、β为不同的两个平面)
①m⊥α,n∥α⇒m⊥n
②m∥n,n∥α⇒m∥α
③m∥n,n⊥β,m∥α⇒α⊥β
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β
其中正确的命题个数有(  )

查看答案和解析>>

同步练习册答案