精英家教网 > 高中数学 > 题目详情

如图所示四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,BC∥AD,PA=AB=BC=2,AD=4,E为PD的中点,F为PC中点.
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)求证:BF∥平面ACE;
(Ⅲ)求直线PD与平面PAC所成的角的正弦值.

(Ⅰ)证明:因为PA⊥底面ABCD,CD?面ABCD,所以PA⊥CD,
又因为直角梯形ABCD中,
所以AC2+CD2=AD2,即AC⊥CD,
又PA∩AC=A,所以CD⊥平面PAC;…(4分)
(Ⅱ)解法一:如图,连接BD,交AC于O,取PE中点G,连接BG,FG,EO,则在△PCE中,FG∥CE,
又EC?平面ACE,FG?平面ACE,所以FG∥平面ACE,
因为BC∥AD,所以,则OE∥BG,
又OE?平面ACE,BG?平面ACE,所以BG∥平面ACE,
又BG∩FG=G,所以平面BFG∥平面ACE,
因为BF?平面BFG,所以BF∥平面ACE.…(10分)
解法二:如图,连接BD,交AC于O,取PE中点G,
连接FD交CE于H,连接OH,则FG∥CE,
在△DFG中,HE∥FG,则
在底面ABCD中,BC∥AD,所以
所以,故BF∥OH,又OH?平面ACE,BF?平面ACE,
所以BF∥平面ACE.…(10分)
(Ⅲ)由(Ⅰ)可知,CD⊥平面PAC,所以∠DPC为直线PD与平面PAC所成的角,
在Rt△PCD中,
所以
所以直线PD与平面PAC所成的角的正弦值为.…(14分)
分析:(Ⅰ)证明CD⊥平面PAC,证明PA⊥CD,AC⊥CD即可;
(Ⅱ)解法一:连接BD,交AC于O,取PE中点G,连接BG,FG,EO,证明平面BFG∥平面ACE,即可证得BF∥平面ACE;
解法二:如图,连接BD,交AC于O,取PE中点G,连接FD交CE于H,连接OH,则证明BF∥OH,即可证得BF∥平面ACE;
(Ⅲ)确定∠DPC为直线PD与平面PAC所成的角,在Rt△PCD中,即可求得直线PD与平面PAC所成的角的正弦值.
点评:本题考查线面垂直、线面平行,考查线面角,解题的关键是掌握线面垂直、线面平行的判定方法,正确找出线面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD边的中点,
(1)求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)已知四棱锥P-ABCD的三视图如图所示,其中主视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.E是侧棱PC上的动点.
(Ⅰ)求证:BD⊥AE
(Ⅱ)若E为PC的中点,求直线BE与平面PBD所成角的正弦值;
(Ⅲ)若五点A,B,C,D,P在同一球面上,求该球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥面ABCD,PA=2,点M,N分别为边PA,BC的中点.建立如图所示的直角坐标系A-xyz.
(1)求异面直线AN与MD所成角的余弦值;
(2)求点B到平面MND的距离.

查看答案和解析>>

科目:高中数学 来源:2011届广东省高考猜押题卷文科数学(三)解析版 题型:解答题

(本小题满分14分)
如图4,四棱锥P-ABCD的底面ABCD是正方形,PD垂直于底面ABCD,已知四棱锥的正视图,如图5所示,
(Ⅰ)若M是PC的中点,证明:DM⊥平面PBC;
(Ⅱ)求棱锥A-BDM的体积.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高考猜押题卷文科数学(三)解析版 题型:解答题

(本小题满分14分)

如图4,四棱锥P-ABCD的底面ABCD是正方形,PD垂直于底面ABCD,已知四棱锥的正视图,如图5所示,

 (Ⅰ)若M是PC的中点,证明:DM⊥平面PBC;

(Ⅱ)求棱锥A-BDM的体积.

 

查看答案和解析>>

同步练习册答案