精英家教网 > 高中数学 > 题目详情
如下图所示,在△ABO中,
OC
=
1
4
OA
OD
=
1
2
OB
,AD与BC相交于点M,设
OA
=
a
OB
=
b
,试用
a
b
表示
OM

∵D,M,A三点共线,
∴存在实数m使得
OM
=m
OD
+(1-m)
OA
=(1-m)
a
+
m
2
b

又B,M,C三点共线,同理可得,
OM
=n
OB
+(1-n)
OC
=
1-n
4
a
+n
b

m
2
=n
1-m=
1-n
4
m=
6
7

OM
=
1
7
a
+
3
7
b
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点,试判断向量的位置关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在矩形ABCD中,以DA所在直线为x轴,以DA中点O为坐标原点,建立如图所示的平面直角坐标系.已知点B的坐标为(3,2),E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为⊙H.
(1)求证:EG⊥BF;
(2)求⊙H的方程;
(3)设点P(0,b),过点P作直线与⊙H交于M,N两点,若点M恰好是线段PN的中点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知线段AB、BD在平面α内,BD⊥AB,线段AC⊥α,如果AB=2,BD=5,AC=4,则C、D间的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是△ABC所在平面内任意一点,且
PA
+
PB
+
PC
=3
PG
,则G是△ABC的(  )
A.外心B.内心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量
a
b
是相互垂直的单位向量,且|
c
|=13,
c
a
=3
c
b
=4
,则对于任意的实数t1,t2,|
c
-t1
a
-t2
b
|的最小值为(  )
A.5B.7C.12D.13

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,|
AB
|=4
|
AC
|=2
,D是BC边上一点,
AD
=
1
3
AB
+
2
3
AC

(1)求证:∠BAD=∠CAD;
(2)若|
AD
|=
6
,求|
BC
|
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设过点的直线与椭圆相交于AB两个不同的点,且.记O为坐标原点.求的面积取得最大值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设点F(0,2),曲线C上任意一点M(x,y)满足以线段FM为直径的圆与x 轴相切.
(1)求曲线C的方程;
(2)设过点Q(0,-2)的直线l与曲线C交于A,B两点,问|FA|,|AB|,|FB|能否成等差数列?若能,求出直线l的方程;若不能,请说明理由.

查看答案和解析>>

同步练习册答案