精英家教网 > 高中数学 > 题目详情
20.设a=log73,$b={log_{\frac{1}{3}}}7$,c=30.7,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.b<c<aD.b<a<c

分析 利用指数函数和对数函数的单调性求解.

解答 解:0=log71<a=log73<log77=1,
$b={log_{\frac{1}{3}}}7$<$lo{g}_{\frac{1}{3}}1$=0,
c=30.7>30=1,
∴b<a<c.
故选:D.

点评 本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.半径为1,圆心角为$\frac{2}{3}π$的扇形卷成一个圆锥,则它的体积为(  )
A.$\frac{{2\sqrt{2}π}}{81}$B.$\frac{{2\sqrt{2}π}}{27}$C.$\frac{π}{27}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列命题:
①存在实数α,使sinα•cosα=$\frac{1}{3}$;
②函数y=sin4x-cos4x的最小正周期是π;
③设$\overrightarrow a,\overrightarrow b$是两个非零向量,若存在实数λ,使$\overrightarrow b$=λ$\overrightarrow a$,则|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$|-|$\overrightarrow b$|;
④若sin(2x1-$\frac{π}{4}$)=sin(2x2-$\frac{π}{4}$),则x1-x2=kπ,其中k∈Z;
⑤若α、β是第一象限的角,且α>β,则sinα>sinβ.
其中正确命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某算法的程序框图如图所示,则执行该算法后输出的结果为(  )
A.$\frac{39}{40}$B.$\frac{49}{50}$C.$\frac{50}{49}$D.$\frac{60}{59}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知tanα=2,则sinαcosα+2cos2α=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC的面积为$\frac{{4\sqrt{3}}}{3}$,AC=3,B=60°,则△ABC的周长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在下列向量组中,可以把向量$\overrightarrow a$=(-3,7)表示出来的是(  )
A.$\overrightarrow{e_1}=(0,1),\overrightarrow{e_2}=(0,-2)$B.$\overrightarrow{e_1}=(1,5),\overrightarrow{e_2}=(-2,-10)$
C.$\overrightarrow{e_1}=(-5,3),\overrightarrow{e_2}=(-2,1)$D.$\overrightarrow{e_1}=(7,8),\overrightarrow{e_2}=(-7,-8)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列结论错误的是(  )
A.命题“若p,则q”与命题“若¬q,则¬p”互为逆否命题
B.命题p:“?x∈[0,1],1≤ex≤e”(e是自然对数的底数),命题q:“?x∈R,x2+x+1<0”,则p∨q为真
C.“am2<bm2”是“a<b”成立的必要不充分条件
D.若p∨q为假命题,则p、q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a=2${\;}^{-\frac{1}{2}}$,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$$\frac{1}{5}$,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

同步练习册答案