精英家教网 > 高中数学 > 题目详情

已知函数 (为实常数).

 (1)若,求的单调区间;  

 (2)若,设在区间的最小值为,求的表达式;

 (3)设,若函数在区间上是增函数,求实数的取值范围.

 

【答案】

(1)   2分

的单调增区间为(),(-,0)  的单调减区间为(-),(

(2)由于,当∈[1,2]时,(1分)

10     即    (1分)

20      即   (1分)

30      即  (1分)

综上可得     (1分)

(3)  在区间[1,2]上任取,且

    (*)  ∵ 

(2分)

∴(*)可转化为对任意

                10  当

20       由  得    解得

30        得 

所以实数的取值范围是  

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数为实常数)(Ⅰ)若函数为奇函数,求此函数的单调区间;(Ⅱ)记,当,试讨论函数的图象与函数的图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数为实常数).

(1)若,作函数的图像;

(2)设在区间上的最小值为,求的表达式;

(3)设,若函数在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数为实常数)(Ⅰ)若函数为奇函数,求此函数的单调区间;(Ⅱ)记,当,试讨论函数的图象与函数的图象的交点个数.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海市嘉定区高三上学期期末考试(一模)理科数学试卷(解析版) 题型:解答题

已知函数为实常数).

(1)若函数图像上动点到定点的距离的最小值为,求实数的值;

(2)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围;

(3)设,若不等式有解,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年江西省高二第二学期期中考试理科数学 题型:解答题

(本大题共14分)

已知函数为实常数)的两个极值点为,且满足

(1)求的取值范围;

(2)比较的大小.

 

查看答案和解析>>

同步练习册答案