精英家教网 > 高中数学 > 题目详情
在△ABC中,tanA是以-4为第三项、4为第七项的等差数列的公差,tanB是以
1
3
为第三项、9为第六项的等比数列的公比,则这个三角形是(  )
分析:利用等差及等比数列的性质求出tanA与tanB的值,再利用两角和与差的正切函数公式求出tanC的值,利用正切函数的性质得出A,B及C的范围,即可确定出三角形的形状.
解答:解:根据题意得:tanA=2,tanB=3,
∴tanC=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=-
2+3
1-2×3
=
5
4

则A,B及C都为锐角,即△ABC为锐角三角形.
故选C
点评:此题考查了三角形的形状判断,涉及的知识有:诱导公式,两角和与差的正切函数公式,以及正切函数的图象与性质,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:数学教研室 题型:022

在△ABC中,tan B=1,tan C=2,b=100,则a=_______.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:022

在△ABC中,tan B=1,tan C=2,b=100,则a=__________.

查看答案和解析>>

科目:高中数学 来源:浙江省湖州中学2010届高三下学期第一次月考数学理科试题 题型:013

在△ABC中,tan=0,则过点C,以A、H为两焦点的椭圆的离心率为

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源:浙江省湖州中学2010届高三下学期第一次月考数学文科试题 题型:013

在△ABC中,tan=0,=0,则过点C,以A、H为两焦点的椭圆的离心率为

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源:0103 期中题 题型:解答题

在△ABC中,tan=2sinC。
(1) 求∠C的大小;
(2) 求y=sinA+sinB+sinC的取值范围。

查看答案和解析>>

同步练习册答案