精英家教网 > 高中数学 > 题目详情
10.已知tan($\frac{π}{4}+a$)=3+$2\sqrt{2}$.
(Ⅰ)求tana的值;
(Ⅱ)求cos2(π-a)+sin($\frac{3π}{2}+a$)cos($\frac{π}{2}$+a)+2sin2(a-π)的值.

分析 (Ⅰ)由两角和的正切函数公式化简已知,整理即可求值.
(Ⅱ)利用诱导公式及同角三角函数关系式的应用,结合(Ⅰ)的结论即可求值.

解答 (本小题满分12分)
解:(Ⅰ)由已知得$\frac{1+tanα}{1-tanα}$=3+2$\sqrt{2}$,
∴tanα=$\frac{\sqrt{2}}{2}$.…(4分)
(Ⅱ)原式=cos2α+(-cosα)(-sinα)+2sin2α
=$\frac{co{s}^{2}α+cosαsinα+2si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$
=$\frac{1+tanα+2ta{n}^{2}α}{1+ta{n}^{2}α}$
=$\frac{1+\frac{\sqrt{2}}{2}+2(\frac{\sqrt{2}}{2})^{2}}{1+(\frac{\sqrt{2}}{2})^{2}}$
=$\frac{4+\sqrt{2}}{3}$.…(10分)

点评 本题主要考查了两角和的正切函数公式,诱导公式及同角三角函数关系式的应用,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.复数z满足(1-2i)z=7+i,则复数z的共轭复数$\overline{z}$=1-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,定义域为R的是(  )
A.y=$\sqrt{x}$B.y=lg|x|C.y=x3+3D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知动圆M过定点B(-4,0),且和定圆(x-4)2+y2=16相外切,则动圆圆心M的轨迹方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>0)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<0)C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1D.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数7开始向右读,请你依次写出检测的第4颗种子的编号810.(下面摘取了随机数表第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 55 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a=log50.5,b=log20.3,c=log0.32则(  )
A.b<a<cB.b<c<aC.c<b<aD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正三棱锥的底面边长为a,高为$\frac{\sqrt{6}}{3}$a,则求此棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.命题“若x2-5x+6=0,则x=2”的逆命题是“若x≠2,则x2-5x+6≠0”
B.若命题p:存在x0∈R,x02+x0+1<0,则¬p:对任意x∈R,x2+x+1≥0
C.若x,y∈R,则“x=y”是“xy≥${(\frac{x+y}{2})}^{2}$”的充要条件
D.已知命题p和q,若“p或q”为假命题,则命题p与q中必一真一假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等差数列的前n项和为Sn,且S15>0,S16<0,则此数列中绝对值最小的项为(  )
A.第5项B.第6项C.第7项D.第8项

查看答案和解析>>

同步练习册答案