精英家教网 > 高中数学 > 题目详情
已知椭圆的一个焦点F1(0,-2
2
)
,对应的准线方程为y=-
9
4
2
,且离心率e满足
2
3
,e,
4
3
成等比数列.
(1)求椭圆的方程;
(2)试问是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-
1
2
平分?若存在,求出l的倾斜角的取值范围;若不存在,请说明理由.
(1)∵
2
3
,e,
4
3
成等比数列∴e2=
2
3
×
4
3
e=
2
3
2

设p(x,y)是椭圆上任意一点,依椭圆的定义得
x2+(y+2
2
)
2
|y+
9
4
2
|
=
2
2
3
,化简得9x2+y2=9

x2+
y2
9
=1
为所求的椭圆方程.
(2)假设l存在,因l与直线x=-
1
2
相交,不可能垂直x轴
因此可设l的方程为:y=kx+m
y=kx+m
9x2+y2=9
消去y,得9x2+(kx+m)2=9整理得

(k2+9)x2+2kmx+(m2-9)=0①
方程①有两个不等的实数根
∴△=4k2m2-4(k2+9)(m2-9)>0即m2-k2-9<0②
设两个交点M、N的坐标分别为(x1,y1)(x2,y2
x1+x2=
-2km
k2+9

∵线段MN恰被直线x=-
1
2
平分
-
1
2
=
x1+x2
2
即-
2km
k2+9
=-1

∵k≠0∴m=
k2+9
2k
③把③代入②得 (
k2+9
2k
)2-(k2+9)<0

∵k2+9>0∴
k2+9
4k2
-1<0
∴k2>3解得k>
3
k<-
3

∴直线l的倾斜角范围为(
π
3
π
2
)∪(
π
2
3
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知椭圆数学公式的一个焦点F(3,0),则a=________.

查看答案和解析>>

科目:高中数学 来源:陕西省模拟题 题型:解答题

已知椭圆的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为,倾斜角为45°的直线l过点F,
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:广东省期中题 题型:解答题

已知椭圆的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为,倾斜角为45°的直线l过点F,
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省玉溪民族中学市高二(上)期中数学试卷(理科)(解析版) 题型:填空题

已知椭圆的一个焦点F(3,0),则a=   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省玉溪民族中学市高二(上)期中数学试卷(理科)(解析版) 题型:填空题

已知椭圆的一个焦点F(3,0),则a=   

查看答案和解析>>

同步练习册答案