精英家教网 > 高中数学 > 题目详情
1.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC-b-c=0.
(1)求A;
(2)若b+c=4,求△ABC的周长的最小值.

分析 (1)利用正弦定理,结合和差的正弦公式,化简可得结论;
(2)利用余弦定理结合基本不等式,可求△ABC的周长的最小值.

解答 解:(1)∵acosC+$\sqrt{3}$asinC-b-c=0,
∴由正弦定理可得sinAcosC+$\sqrt{3}$sinAsinC=sinB+sinC=0,
∴sinAcosC+$\sqrt{3}$sinAsinC=sin(A+C)+sinC,
∴$\sqrt{3}$sinA-cosA=1,
∴sin(A-30°)=$\frac{1}{2}$,
∴A-30°=30°,∴A=60°;
(2)由余弦定理a2=(b+c)2-3bc≥$\frac{1}{4}$(b+c)2(当且仅当b=c时取等号),
∴a≥2,
∴a+b+c=a+4≥6,
∴△ABC的周长的最小值为6.

点评 本题考查正弦定理、余弦定理的运用,考查基本不等式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-1|+|x-2|.
(I)求关于x的不等式f(x)<2的解集;
(Ⅱ)如果关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)求函数y=$\sqrt{x+1}$+$\frac{(x+1)^{0}}{2-x}$的定义域;
(2)求函数$y=\frac{2x-1}{x+2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆C1:x2+y2=a2与圆C2:(x-b)2+(y-c)2=a2相切,则$\frac{{b}^{2}+{c}^{2}}{{a}^{2}}$等于(  )
A.1B.2C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列表述中错误的是(  )
A.归纳推理是由特殊到一般的推理B.演绎推理是由一般到特殊的推理
C.类比推理是由特殊到一般的推理D.类比推理是由特殊到特殊的推理

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在空间直角坐标系中有正三棱柱ABC-A1B1C1点是O、O1分别是棱AC、A1C1的中点,且AA1=$\sqrt{2}$,AB1⊥BC1
(1)求正三棱柱ABC-A1B1C1的体积.
(2)若M为BC1的中点,求异面直线AM与BO所成角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若幂函数y=xα的图象过点$({\sqrt{2},4})$,则α=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线y=kx+1与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1相交,且过焦点,则k=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sinα-cosβ=-$\frac{1}{2}$,sinβ-cosα=-$\frac{1}{2}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),则sin(α+β)=$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案