精英家教网 > 高中数学 > 题目详情
19.已知△ABC的三个顶点A(-5,0),B(3,-3),C(0,2).
(1)求AC边所在直线的方程;
(2)求边AC的垂直平分线方程.

分析 (1)根据直线的两点式方程,求出直线AC的方程即可;
(2)求出边AC的中点坐标,代入与直线AC垂直的直线方程中,即可求出AC边的垂直平分线方程.

解答 解:(1)∵△ABC的三个顶点A(-5,0),B(3,-3),C(0,2),
∴直线AC的方程为$\frac{x+5}{0+5}$=$\frac{y-0}{2-0}$,
化为一般方程是2x-5y+10=0;
(2)边AC的中点坐标为
x=$\frac{-5+0}{2}$=-$\frac{5}{2}$,y=$\frac{0+2}{2}$=1;
且设AC的垂直平分线方程为5x+2y+m=0,
把中点坐标代入方程,得
5×(-$\frac{5}{2}$)+2×1+m=0,
解得m=$\frac{21}{2}$,
∴AC边的垂直平分线方程为5x+2y+$\frac{21}{2}$=0,
即10x+4y+21=0.

点评 本题考查了直线方程的应用问题,也考查了直线的垂直关系的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ln(x+1)-x(x>-1).
(1)求f(x)的单调区间;
(2)若k∈Z,且f(x-1)+x>k(1-$\frac{3}{x}$)对任意x>1恒成立,求k的最大值;
(3)对于在(0,1)中的任意一个常数a,是否存在正数x0,使得e${\;}^{f({x}_{0})}$<1-$\frac{a}{2}$x02成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若直线x+(a-1)y+1=0与直线ax+2y+2=0垂直,则实数a的值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB是圆O的直径,C是圆O上异于A、B的一个动点,DC垂直于圆O所在的平面,DC∥EB,DC=EB=1,AB=4.
(1)求证:DE⊥平面ACD;
(2)若AC=BC,求平面AED与平面ABE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两条平行直线l1:3x-2y-1=0,l2:3x-2y+1=0的距离是(  )
A.$\frac{{2\sqrt{13}}}{13}$B.$\frac{{\sqrt{13}}}{13}$C.$\frac{1}{13}$D.$\frac{2}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F1、F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过右焦点F2的直线交椭圆于A、B两点,且AF2=2F2B,tan∠AF1B=$\frac{3}{4}$,则该椭圆的离心率等于$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2+ax-c,g(x)=($\frac{1}{2}$)x-m,若不等式f(x)<0的解集为{x|-2<x<1},若对任意的x1∈[-3,-2],存在x2∈[0,2],使f(x1)≥g(x2),则实数m的取值范围是(  )
A.m≥$\frac{1}{4}$B.m≥1C.m≥0D.m≥2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点.求:
(1)当|OA|十|OB|取得最小值时,直线l的方程;
(2)当|MA|2+|MB|2取得最小值时,直线l的方程.

查看答案和解析>>

同步练习册答案