精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{\begin{array}{l}{ax+a,x≥0}\\{{e}^{ax},x<0}\end{array}\right.$为R上的增函数,则实数a的取值范围是(  )
A.(0,+∞)B.[1,+∞)C.(0,1]D.(1,+∞)

分析 若f(x)=$\left\{\begin{array}{l}{ax+a,x≥0}\\{{e}^{ax},x<0}\end{array}\right.$为R上的增函数,根据第一、二段函数为增函数,且x=0时,第一段的函数值不小于第二段的函数值,进而构造关于a的不等式组,解不等式组可得实数a的取值范围.

解答 解:∵f(x)=$\left\{\begin{array}{l}{ax+a,x≥0}\\{{e}^{ax},x<0}\end{array}\right.$为R上的增函数,
∴$\left\{\begin{array}{l}{a>1}\\{a≥{e}^{0}}\end{array}\right.$,
解得:a>1,
故实数a的取值范围为[1,+∞),
故选:B.

点评 题考查的知识点是分段函数的单调性,其中根据已知构造关于a的不等式组,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.等差数列{an}中,前n项和为Sn,若S4=8a1,a4=4+a2,则S10=120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直角梯形ABCD中,AB⊥BC,绕着CD所在直线l旋转,指出所得到的几何体的结构特征.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.180°,360°是实数吗?不是{x|0°≤x≤360°}可以作为函数的定义域吗?可以.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三个力f1,f2,f3作用于物体同一点,使物体处于平衡状态,若f1=(2,2),f2=(-2,3).则|f3|为 (  )
A.2.5B.4$\sqrt{2}$C.2$\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若P是正四面体V-ABC的侧面VBC上一点,点P到平面ABC的距离与到点V的距离相等,则动点P的轨迹为(  )
A.一条线段B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.存在最小的合数n,使得2n-1≡1(modn)成立,则n的值为(  )
A.327B.341C.331D.355

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{{{{log}_2}x}}{{{{log}_2}a}}$(0<a<1)在区间[a,2a]上最大值与最小值之差为2,则a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$\overrightarrow{a}$、$\overrightarrow{b}$都是非零向量,下列四个条件中,使$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$=$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$成立的充要条件是(  )
A.$\overrightarrow{a}$=-$\overrightarrow{b}$B.$\overrightarrow{a}$∥$\overrightarrow{b}$且方向相同C.$\overrightarrow{a}$=2$\overrightarrow{b}$D.$\overrightarrow{a}$∥$\overrightarrow{b}$且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|

查看答案和解析>>

同步练习册答案