精英家教网 > 高中数学 > 题目详情
20.若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成45°角,则D1到平面ACB1的距离为(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

分析 说明几何体是正方体,然后证明BD1⊥平面AB1C,再计算BO的长,即可求得D1到平面ACB1的距离.

解答 解:正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成45°角,
可知几何体是正方体,
连接BD1,BD,则AC⊥BD,AC⊥B1B
∵BD∩B1B=B,∴AC⊥平面BD1
∵BD1?平面BD1,∴AC⊥BD1
同理AB1⊥BD1
∵AC∩AB1=A,∴BD1⊥平面AB1C
设垂足为O,在三棱锥B1-ABC中,$\frac{1}{3}$×$\frac{1}{2}$a×a×a=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×2a2×BO
∴BO=$\frac{\sqrt{3}}{3}$a
∵BD1=$\sqrt{3}$a
∴D1O=$\frac{2\sqrt{3}}{3}$a
即D1到平面ACB1的距离为$\frac{2\sqrt{3}}{3}$a
故选:C.

点评 本题考查点到面的距离的计算,考查线面垂直的证明与三棱锥的体积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知椭圆C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的AB的中点M的坐标为(2,1),则直线AB的方程为x+2y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x0是函数f(x)=ex-$\frac{1}{x-1}$的一个零点(其中e为自然对数的底数),若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.化简$\sqrt{(2a-3)^{2}}$(a<1)的结果为(  )
A.a-$\frac{3}{2}$B.0C.2a-3D.-2a+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在样本的频率分布直方图中,共有8个小长方形,若最后一个小长方形的面积等于其他7个小长形的面积和的$\frac{1}{4}$,且样本容量为200,则第8组的频数为40.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.几何体的三视图(单位:cm)如图所示,则此几何体的表面积是138cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,三棱台ABC-A1B1C1中,A1B1:AB=1:2,则三棱锥B-A1B1C1与三棱锥A1-ABC的体积之比为(  )
A.1:2B.1:3C.1:$\sqrt{2}$D.1:4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知经过两点A(5,m)、B(m,8)的直线的斜率大于1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=3+log2x的定义为[1,4],则函数y=f2(x)+f(x2)的值域是(  )
A.[-4,32]B.[12,21]C.[21,32]D.[12,32]

查看答案和解析>>

同步练习册答案