精英家教网 > 高中数学 > 题目详情

对于函数,解答下列问题:

(1)若定义域为R,求实数a的取值范围;

(2)若函数内为增函数,求实数a的取值范围.

 

【答案】

(1)

(2)

【解析】(1)利用函数恒成立知识列出关于a 的不等式,然后求解即可;(2)根据复合函数的单调性转化为内层函数g(x)在给定区间内的单调问题

(1)(5分)∵恒成立   

(或由的解集为R,得   求出

(2)(7分)命题等价于等价于等价于

 故所求a的取值范围是.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f′′(x)是函数y=f(x)的导函数y=f′(x)的导数,若f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.现已知f(x)=x3-3x2+2x-2,请解答下列问题:
(Ⅰ)求函数f(x)的“拐点”A的坐标;
(Ⅱ)求证f(x)的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明);
(Ⅲ)若另一个三次函数G(x)的“拐点”为B(0,1),且一次项系数为0,当x1>0,x2>0(x1≠x2)时,试比较
G(x1)+G(x2)
2
G(
x1+x2
2
)
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于一般的三次函数f(x)=ax3+bx2+cx+d,(a≠0)定义:设f''(x)是函数y=f(x)的导函数y=f'(x)的导数.若f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,现已知:g(x)=(x-a)(x-b)(x-c),请解答下列问题:
(Ⅰ).若y=g(x)是R上的增函数,求证a=b=c;
(Ⅱ)在(Ⅰ).的条件下,求函数y=g(x)的“拐点”A的坐标,并证明函数y=g(x)的图象关于“拐点”A成中心对称.

查看答案和解析>>

科目:高中数学 来源:2011年5月广东省梅州市中学高三(下)月考数学试卷(理科)(解析版) 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f′′(x)是函数y=f(x)的导函数y=f′(x)的导数,若f′′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”.现已知f(x)=x3-3x2+2x-2,请解答下列问题:
(Ⅰ)求函数f(x)的“拐点”A的坐标;
(Ⅱ)求证f(x)的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明);
(Ⅲ)若另一个三次函数G(x)的“拐点”为B(0,1),且一次项系数为0,当x1>0,x2>0(x1≠x2)时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源:2010年湖北省襄樊市高三三月调考数学试卷(解析版) 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f′′(x)是函数y=f(x)的导函数y=f′(x)的导数,若f′′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”.现已知f(x)=x3-3x2+2x-2,请解答下列问题:
(Ⅰ)求函数f(x)的“拐点”A的坐标;
(Ⅱ)求证f(x)的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明);
(Ⅲ)若另一个三次函数G(x)的“拐点”为B(0,1),且一次项系数为0,当x1>0,x2>0(x1≠x2)时,试比较的大小.

查看答案和解析>>

同步练习册答案