精英家教网 > 高中数学 > 题目详情

已知圆及定点P(4,0),问过点P的直线倾斜角在什么范围内取值时,该直线与已知圆相交?相切?并求出切线方程。

        

                                              

解:设点P(4,0)的直线l的方程为,圆心O到直线l的距离

                                    

         直线l与圆相交

         直线l与圆相切

         当斜率k不存在时,相离。


解析:

本题是直线与圆的位置关系的典型题,由于平面几何对圆的性质进行研究,因此解这类题用“几何法”较好,这种方法是通过圆心到直线的距离与半径的大小关系求解。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:(x-m)2+(y-n)22及定点N(1,0),点P是圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0.
(Ⅰ)若m=-1,n=0,r=4,求点G的轨迹C的方程;
(Ⅱ)若动圆M和(Ⅰ)中所求轨迹C相交于不同两点A、B,是否存在一组正实数m,n,r使得直线MN垂直平分线段AB,若存在,求出这组正实数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;
(Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;
(Ⅱ)求切线长|PA|的最小值;
(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+2)2+y2=4及点C2(2,0),在圆C1上任取一点P,连接C2P,做线段C2P的中垂线交直线C1P于点M.
(1)当点P在圆C1上运动时,求点M的轨迹E的方程;
(2)设轨迹E与x轴交于A1,A2两点,在轨迹E上任取一点Q(x0,y0)(y0≠0),直线QA1,QA2分别交y轴于D,E两点,求证:以线段DE为直径的圆C过两个定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:郑州二模 题型:解答题

已知圆M:(x-m)2+(y-n)22及定点N(1,0),点P是圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0.
(Ⅰ)若m=-1,n=0,r=4,求点G的轨迹C的方程;
(Ⅱ)若动圆M和(Ⅰ)中所求轨迹C相交于不同两点A、B,是否存在一组正实数m,n,r使得直线MN垂直平分线段AB,若存在,求出这组正实数;若不存在,说明理由.

查看答案和解析>>

同步练习册答案