精英家教网 > 高中数学 > 题目详情
已知曲线y=
1
3
x3+
4
3
,则过点P(2,4)的切线方程为
x-y+2=0,或4x-y-4=0
x-y+2=0,或4x-y-4=0
分析:设出曲线过点P切线方程的切点坐标,把切点的横坐标代入到导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可.
解答:解:设曲线 y=
1
3
x3+
4
3
与过点P(2,4)的切线相切于点A(x0
1
3
x03+
4
3
),
则切线的斜率 k=y′|x=x0=x02
∴切线方程为y-(
1
3
x03+
4
3
)=x02(x-x0),
即 y=x
 
2
0
•x-
2
3
x
 
3
0
+
4
3

∵点P(2,4)在切线上,
∴4=2x02-
2
3
x03+
4
3
,即x03-3x02+4=0,
∴x03+x02-4x02+4=0,
∴(x0+1)(x0-2)2=0
解得x0=-1或x0=2
故所求的切线方程为4x-y-4=0或x-y+2=0.
故答案为:x-y+2=0,或4x-y-4=0.
点评:此题考查学生会利用导数研究曲线上某点的切线方程,是一道综合题.学生在解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”;同时解决“过某点的切线”问题,一般是设出切点坐标解决.本题易主观地认为点P即为切点.将它与求曲线上某点处的切线方程混淆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3+
4
3
,则曲线在点P(2,4)处的切线方程为(  )
A、4x+y-12=0
B、4x-y-4=0
C、2x+y-8=0
D、2x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线 y=
1
3
x3+2x-
2
3

(1)求曲线在点P(2,6)处的切线方程;
(2)求曲线过点P(2,6)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3+2与曲线y=4x2-1在x=x0处的切线互相垂直,则x0的值为
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3-
1
2
x2+
1
3
在x=-1
处的切线方程为
4x-2y+3=0
4x-2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3在x=x0处的切线L经过点P(2,
8
3
),求切线L的方程.

查看答案和解析>>

同步练习册答案