精英家教网 > 高中数学 > 题目详情
函数f(x)=(a-2)x2+2(a-2)x-4的定义域为R,值域为(-∞,0],则满足条件的实数a组成的集合是
{a|-2≤a<2}
{a|-2≤a<2}
分析:由题意,结合二次函数的图象与性质解答本题,容易得出结论.
解答:解:∵函数f(x)=(a-2)x2+2(a-2)x-4的定义域为R,值域为(-∞,0],
∴当a-2≥0时,不满足条件;
当a-2<0时,[2(a-2)]2-4(a-2)×(-4)≤0,解得-2≤a≤2,
∴-2≤a<2;
∴满足条件的实数a组成的集合是{a|-2≤a<2};
故答案为:{a|-2≤a<2}.
点评:本题考查了应用二次函数的图象与性质解不等式恒成立的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
3
sinxcosx+cos2x+a.
(1)写出函数f(x)的最小正周期及单调递减区间;
(2)当x∈[-
π
6
π
3
]时,函数f(x)的最大值与最小值的和为
3
2
,求f(x)的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax(a>0且a≠1)在区间[-2,2]上的值不大于2,则函数g(a)=log2a的值域是(  )
A、[-
1
2
,0)∪(0,
1
2
]
B、(-∞,-
1
2
)∪(0,
1
2
]
C、[-
1
2
1
2
]
D、[-
1
2
,0)∪[
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=ax2+(a+3)x-1在区间(-∞,1)上为递增的,则a的取值范围是(  )
A、[-1,0)B、(-1,0]C、(-1,0)D、[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x∈R,a,b为常数,则方程f(ax+b)=0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4lnx-ax+
a+3
x
(a≥0)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当a≥1时,设g(x)=2ex-4x+2a,若存在x1,x2∈[
1
2
,2],使f(x1)>g(x2),求实数a的取值范围.(e为自然对数的底数,e=2.71828…)

查看答案和解析>>

同步练习册答案