精英家教网 > 高中数学 > 题目详情
(2009•西安二模)已知O是△ABC内一点,向量
OA
OB
OC
满足
OA
+2
OB
+
OC
=
0
,则S△OAB:S△OBC:S△OAC等于(  )
分析:设D为AC中点,连结OD,由向量加法法则和已知条件向量等式,可得
OD
=-
OB
=
1
2
OA
+
OC
),从而得到B、O、D三点共线,且O为BD的中点.由三角形中线的性质,可得S△OAB=S△OBC=S△OAD=S△OCD=
1
2
S△OAC,由此即可算出S△OAB:S△OBC:S△OAC的值,从而得到本题答案.
解答:解:设D为AC中点,连结OD,则
∵OD是△OBC的中线,
∴向量
OD
=
1
2
OA
+
OC

∵由已知得
OA
+2
OB
+
OC
=
0

∴向量
OB
=-
1
2
OA
+
OC

因此可得:
OD
=-
OB

即B、O、D三点共线,且O为BD的中点
∴△ABD中,AO是BD边上的中线,可得S△OAB=S△OAD
同理可得△BCD中,S△OBC=S△OCD
∴S△OAB=S△OBC=S△OAD=S△OCD=
1
2
S△OAC
由此可得S△OAB:S△OBC:S△OAC=1:1:2
故选:D
点评:本题给出三角形ABC内部一点O满足的向量等式,求O与三角形的三个顶点构成三角形的面积比.着重考查了平面向量的加法法则、三角形中线的性质和求三角形面积比的方法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•西安二模)设全集U={1,2,3,4,5},A={1,2,3},B={2,3,4},则(?UA)∪(?UB)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•西安二模)“|x-1|<2成立”是“x(x+1)<0成立”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•西安二模)设f(x)=log2x的反函数为f-1(x),且f-1(a)+f-1(b)=4,则a+b的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•西安二模)某学校有3000名学生,其中高三年级有900名学生.为调查学生的学习时间情况,采用分层抽样的方法抽取一个容量为150的样本,则样本高三年级的学生人数为(  )

查看答案和解析>>

同步练习册答案