解:
(1)①如图,在直角坐标系xOy内做单位圆O,并作出角α、β与-β,使角α的始边为Ox,交⊙O于点P
1,
终边交⊙O于P
2;
角β的始边为OP
2,终边交⊙O于P
3;角-β的始边为OP
1,终边交⊙O于P
4.

则P
1(1,0),P
2(cosα,sinα)
P
3(cos(α+β),sin(α+β)),P
4(cos(-β),sin(-β))
由P
1P
3=P
2P
4及两点间的距离公式,得
[cos(α+β)-1]
2+sin
2(α+β)=[cos(-β)-cosα]
2+[sin(-β)-sinα]
2展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)
∴cos(α+β)=cosαcosβ-sinαsinβ.(4分)
②由①易得cos(

-α)=sinα,sin(

-α)=cosα
sin(α+β)=cos[

-(α+β)]=cos[(

-α)+(-β)]
=cos(

-α)cos(-β)-sin(

-α)sin(-β)
=sinαcosβ+cosαsinβ(6分)
(2)由题意,设△ABC的角B、C的对边分别为b、c
则S=

bcsinA=


=bccosA=3>0
∴A∈(0,

),cosA=3sinA
又sin
2A+cos
2A=1,∴sinA=

,cosA=

由题意,cosB=

,得sinB=

∴cos(A+B)=cosAcosB-sinAsinB=

故cosC=cos[π-(A+B)]=-cos(A+B)=-

(12分)
分析:(I)①建立单位圆,在单位圆中作出角,找出相应的单位圆上的点的坐标,由两点间距离公式建立方程化简整理既得;②由诱导公式cos[

-(α+β)]=sin(α+β)变形整理可得.
(II)

,求出角A的正弦,再由

,用cosC=-cos(A+B)求解即可.
点评:本小题主要考查两角和的正、余弦公式、诱导公式、同角三角函数间的关系等基础知识及运算能力.