精英家教网 > 高中数学 > 题目详情
19、已知函数f(x)对一切x,y都有f(ab)=bf(a)+af(b)
(1)求f(0);
(2)求证:f(x)是奇函数;
(3)若F(x)=af(x)+bx5+cx3+2x2+dx+3,已知F(-5)=7,求F(5)
分析:(1)用赋值法f(-1)
(2)用赋值法求f(1),f(-1),再对b赋值-1,就可得到关于f(-x)与f(x)的关系式.
(3)利用f(x)是奇函数可得F(x)-3-2x2也为奇函数,再利用奇函数的图象关于原点对称即可求F(5).
解答:解:(1)令a=b=0?f(0)=0f(0)+0f(0)=0?f(0)=0
(2)证明:令a=b=1?f(1)=0,令a=b=-1?f(1)=-2f(-1)?f(-1)=0
令b=-1?f(-a)=-f(a)+af(-1)=-f(a)?f(-x)=-f(x)
所以f(x)是奇函数;
(3)∵f(x)是奇函数,
∴F(x)-3-2x2=af(x)+bx5+cx3+dx也为奇函数,
∴F(-5)-3-2×(-5)2=-[F(5)-3-2×52]又因为F(-5)=7,
∴F(5)=-F(-5)+106=99,
即:F(5)=99.
点评:本题考查抽象函数的奇偶性及特殊值点,抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.抽象函数的抽象性赋予它丰富的内涵和多变的思维价值,可以考查类比猜测,合情推理的探究能力和创新精神.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•绵阳一模)已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
).又数列{an}满足,a1=
1
2
,an+1=
2an
1+an2

(I )证明:f(x)在(-1,1)上是奇函数
( II )求f(an)的表达式;
(III)设bn=
1
2log2|f(an+1)
,Tn为数列{bn}的前n项和,若T2n+1-Tn
m
15
(其中m∈N*)对N∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•滨州一模)已知函数f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)设△ABC的三个内角A,B,C的对边分别为a,b,c,其中c=2
3
,f(C)=0,若向量
m
=(sinB,2)与向量
n
=(1,-sinA)垂直,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武清区一模)已知函数f(x)对任意的x,y∈R,均有f(x+y)=f(x)f(y),且当x>0时,0<f(x)<1,设M={y|f(y)f(1-2a)>f(1)},N={y|f(ax2+2x-y+3)=1,x∈R},若M∩N=∅,则实数a的取值范围是
1
2
≤a≤1
1
2
≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)已知函数f(x)对任意的x∈R有f(x)+f(-x)=0,且当x>0时,f(x)=ln(x+1),则函数f(x)的大致图象为(  )

查看答案和解析>>

同步练习册答案