精英家教网 > 高中数学 > 题目详情

已知f(x)=ax2+x-a,a∈R.
(1)若不等式f(x)>(a-1)x2+(2a+1)x-3a-1对任意实数x∈[-1,1]恒成立,求实数a的取值范围;
(2)若a<0,解不等式f(x)>1.

解:(1)原不等式等价于x2-2ax+2a+1>0对任意的实数x∈[-1,1]恒成立,
设g(x)=x2-2ax+2a+1=(x-a)2-a2+2a+1
①当a<-1时,gmin(x)=g(-1)=1+2a+2a+1>0,得a∈Φ;
②当-1≤a≤1时,,得
③当a>1时,gmin(x)=g(1)=1-2a+2a+1>0,得a>1;
综上
(3)不等式f(x)>1即为ax2+x-a-1>0,即(x-1)(ax+a+1)>0
因为a<0,所以,因为
所以当时,,解集为{x|};
时,(x-1)2<0,解集为?;
时,,解集为{x|}
分析:(1)原不等式等价于x2-2ax+2a+1>0对任意的实数x∈[-1,1]恒成立,设g(x)=x2-2ax+2a+1=(x-a)2-a2+2a+1,只需gmin(x)>0即可.
(2)不等式f(x)>1即为ax2+x-a-1>0,即(x-1)(ax+a+1)>0转化为二次不等式求解,注意分类讨论.
点评:本题考查二次函数性质和一元二次不等式的解法,分类讨论思想,均属基本知识和能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2:已知f(x)=ax2+bx+c的图象过点(-1,0),是否存在常数a、b、c,使不等式x≤f(x)≤
x2+12
对一切实数x都成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,则f(2)的取值范围是
[2,10]
[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在区间(
1
2
,1)
上不单调,则
3b-2
3a+2
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)无零点,则g(x)>0对?x∈R成立;
②若f(x)有且只有一个零点,则g(x)必有两个零点;
③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(
3
2
)从小到大的顺序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步练习册答案