精英家教网 > 高中数学 > 题目详情

已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:

方案甲:逐个化验,直到能确定患病动物为止.

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.

(1)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;

(2) 表示依方案乙所需化验次数,求的期望.

(1)0.72(2)2.4


解析:

(1)设12分别表示依方案甲和依方案乙需化验的次数,P表示对应的概率,则

方案甲中1的概率分布为

1

2

3

4

P

方案乙中2的概率分布为

 

1

2

3

P

0

若甲化验次数不少于乙化验次数,则

P=P(1=1)×P(2=1)+P(1=2)×[P(2=1)+P(2=2)]+P(1=3)×[P(2=1)+P(2=2)+P(2=3)]+P(1=4)

=0+×(0+)+×(0++)+=

=0.72.

(2)E()=1×0+2×+3×==2.4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

(注意:在试题卷上作答无效)

已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:

方案甲:逐个化验,直到能确定患病动物为止;

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验。

求依方案甲所需化验次数不少于依方案乙所需化验次数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(全国Ⅰ卷文20)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:

方案甲:逐个化验,直到能确定患病动物为止.

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.

求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.

查看答案和解析>>

同步练习册答案