精英家教网 > 高中数学 > 题目详情

抛物线y2=2px(p>0)的焦点为F,准线l与x轴交于点M,若N为l上一点,当△MNF为等腰三角形,数学公式时,则p=________.

2
分析:根据抛物线的方程求出焦点F的坐标和准线l的方程及M的坐标,根据N为l上一点且△MNF为等腰三角形得到△MNF为等腰直角三角形,根据勾股定理求出MF的长度即为P的值.
解答:根据抛物线方程得到焦点F(,0),准线l的方程为x=-,所以M(-,0),则MF=p,
又因为△MNF为等腰三角形,N为l上一点得到三角形MNF为等腰直角三角形即MF=MN,
又斜边NF=2,根据勾股定理求出MF=2
则p=2
故答案为:2
点评:本题要求学生掌握抛物线的简单性质,灵活运用勾股定理解直角三角形.是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为(  )
A、y2=
3
2
x
B、y2=9x
C、y2=
9
2
x
D、y2=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px(p>0)上的点M(4,y)到焦点F的距离为5,O为坐标原点,则△OFM的面积为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px,(p>0)绕焦点依逆时针方向旋转90°所得抛物线方程为…(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)若抛物线y2=2px(p>0)的焦点到双曲线x2-y2=1的渐近线的距离为
3
2
2
,则p的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(-1,0)作抛物线y2=2px(p>0)的两条切线,切点分别为B、C,且△ABC是正三角形,则抛物线方程为
y2=
4
3
x
y2=
4
3
x

查看答案和解析>>

同步练习册答案