【题目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+6﹣2m=0(m∈R).
(1)求该方程表示一条直线的条件;
(2)当m为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(3)已知方程表示的直线l在x轴上的截距为﹣3,求实数m的值;
(4)若方程表示的直线l的倾斜角是45°,求实数m的值.
【答案】
(1)解:当x,y的系数不同时为零时,方程表示一条直线,
令m2﹣2m﹣3=0,解得m=﹣1,m=3;
令2m2+m﹣1=0,解得m=﹣1,m= .
∴方程表示一条直线的条件是:m∈R,且m≠﹣1
(2)解:由(1)易知,当m= 时,方程表示的直线的斜率不存在,
此时的方程为:x= ,它表示一条垂直于x轴的直线
(3)解:依题意,有 =﹣3,
∴3m2﹣4m﹣15=0,
∴m=3或m=﹣ ,由(1)易知,所求m=﹣
(4)解:∵直线l的倾斜角是45°,
∴其斜率为1,
∴﹣ =1,解得m= 或m=﹣1(舍去).
∴直线l的倾斜角是45°时,m=
【解析】(1)当x,y的系数不同时为零时即可(2)由2m2+m﹣1=0,再结合(1)可求得m的值,从而可求得这时的直线方程;(3)利用 =﹣3,再结合(1)可求得m的值;(4)依题意,可求得直线l的斜率,从而可求得实数m的值.
【考点精析】认真审题,首先需要了解一般式方程(直线的一般式方程:关于的二元一次方程(A,B不同时为0)).
科目:高中数学 来源: 题型:
【题目】函数f(x)=ln ,则f(x)是( )
A.奇函数,且在(0,+∞)上单调递减
B.奇函数,且在(0,+∞)上单凋递增
C.偶函数,且在(0,+∞)上单调递减
D.偶函数,且在(0,+∞)上单凋递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x= 时,f(x)取得最大值3,当x=﹣ 时,f(x)取得最小值﹣3. (Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为棱CC1上的动点.
(1)若E为棱CC1的中点,求证:A1E⊥平面BDE;
(2)试确定E点的位置使直线A1C与平面BDE所成角的正弦值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 + =1(a>b>0)右顶点与右焦点的距离为 ﹣1,短轴长为2 . (Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为 ,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C中心在原点,离心率 ,其右焦点是圆E:(x﹣1)2+y2=1的圆心.
(1)求椭圆C的标准方程;
(2)如图,过椭圆C上且位于y轴左侧的一点P作圆E的两条切线,分别交y轴于点M、N.试推断是否存在点P,使 ?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比数列,公比不为1.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间四边形ABCD中,E,F,G分别是AB,BC,CD的中点,
(1)求证:BD∥平面EFG;
(2)若AD=CD,AB=CB,求证:AC⊥BD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com