精英家教网 > 高中数学 > 题目详情
已知F1(-1,0),F2(1,0)为椭圆
x2
a2
+
y2
b2
=1
的两个焦点,若椭圆上一点P满足|
PF1
|+|
PF2
|=4
,则椭圆的离心率e=(  )
分析:根据椭圆的定义,可得2a=|
PF1
|+|
PF2
|
=4,从而得到a=2,再由焦点坐标得到c=1,结合离心率公式即可得到该椭圆的离心率的值.
解答:解:∵椭圆
x2
a2
+
y2
b2
=1
的两个焦点为F1、F2,椭圆上一点P满足|
PF1
|+|
PF2
|=4

∴根据椭圆的定义得2a=|
PF1
|+|
PF2
|
,即2a=4,得a=2
∵两个焦点为F1(-1,0),F2(1,0)
∴c=1,可得椭圆的离心率e=
c
a
=
1
2

故选:C
点评:本题给出椭圆上一点到两个焦点的距离,求椭圆的离心率.着重考查了椭圆的标准方程和简单几何性质等知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1(-1,0),F2(1,0),A(
1
2
,0),动点P满足3
PF1
PA
+
PF2
PA
=0.
(1)求动点P的轨迹方程.
(2)是否存在点P,使PA成为∠F1PF2的平分线?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-1,0),F2(1,0),点p满足|
PF
1
|+|
PF
2
|=2
2
,记点P的轨迹为E.
(Ⅰ)求轨迹E的方程;
(Ⅱ)过点F2(1,0)作直线l与轨迹E交于不同的两点A、B,设
F2A
F2B
,T(2,0),,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-1,0)、F2(1,0)为椭圆的焦点,且直线x+y-
7
=0
与椭圆相切.
(Ⅰ)求椭圆方程;
(Ⅱ)过F1的直线交椭圆于A、B两点,求△ABF2的面积S的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-1,0),F2(1,0)是椭圆
x2
a2
+
y2
b2
=1的两个焦点,点G与F2关于直线l:x-2y+4=0对称,且GF1与l的交点P在椭圆上.
(I)求椭圆方程;
(II)若P、M(x1,y1),N(x2,y2)是椭圆上的不同三点,直线PM、PN的倾斜角互补,问直线MN的斜率是否是定值?如果是,求出该定值,如果不是,说明理由.

查看答案和解析>>

同步练习册答案