精英家教网 > 高中数学 > 题目详情
平面上有一个边长为4
3
的等边△ABC网格,现将直径等于2的均匀硬币抛掷在此网格上(假定都落在此网格上),求硬币落下后与网格线没有公共点的概率.
分析:由题意知本题是一个几何概型,概率等于面积之比,根据题意算出试验包含的总面积和符合条件的面积,两者求比值,得到要求的概率.所有的随机基本事件所构成的区域为△ABC.要使硬币落在网格上的条件是硬币的重心需落在此△ABC的边上或内部,所构成的区域为△EFG区域,最后得到试验发生的所有事件对应的面积,求比值得到结果.
解答:精英家教网解:设事件M={硬币落下后与等边△ABC的网格线没有公共点}.
要使硬币落在网格上的条件是硬币的重心需落在此△ABC的边上或内部,
故所有的随机基本事件所构成的区域为△ABC.
当硬币与边恰有一个公共点的重心位置就是临界点的位置.如图,
所有临界点形成三条临界线,三条临界线构成一个小△EFG区域,
因此事件M所构成的区域为△EFG区域.
经计算得△EFG的边长为2
3

P(M)=
S△EFG
S△ABC
=
3
4
×2
3
×2
3
3
4
×4
3
×4
3
=
1
4
点评:本题考查几何概型和求面积的方法,几何概型和古典概型是高中必修中学习的高考时常以选择和填空出现,有时文科会考这种类型的解答题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有
(1)(2)(3)
(1)(2)(3)
.(填上所有正确命题的序号) 
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有________.(填上所有正确命题的序号)
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有___________(只需填上正确命题的序号).

(1)动点A′在平面ABC上的射影是线段AF

(2)三棱锥A′—FED的体积有最大值;

(3)恒有平面A′GF⊥平面BCED;

(4)异面直线A′E与BD不可能互相垂直;

(5)异面直线FE与A′D所成角的取值范围是(0,].

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省攀枝花七中高二(上)期中数学试卷(文科)(解析版) 题型:填空题

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有    .(填上所有正确命题的序号) 
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省攀枝花七中高二(上)期中数学试卷(文科)(解析版) 题型:填空题

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有    .(填上所有正确命题的序号) 
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

同步练习册答案