精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面积S.
分析:(Ⅰ)利用三角函数的恒等变化简函数f(x)的解析式为
1
2
-
3
2
sin2x,由此可得它的最小正周期和值域.
(Ⅱ)由2
AC
CB
=
2
ab,求得sin2A=
1
2
,故A=
π
12
,B=
π
6
,再利用正弦定理求得a、b的值,根据 S=
1
2
ab•sinC,运算求得结果.
解答:解:(Ⅰ)因为函数f(x)=cos( 2x+
π
3
)+sin2x=
1
2
cos2x-
3
2
sin2x+
1-cos2x
2
=
1
2
-
3
2
sin2x,
所以,最小正周期T=
2
=π,值域为[
1-
3
2
1+
3
2
].…(6分)
(Ⅱ)∵2
AC
CB
=
2
ab,∴2ab•cos(π-C)=
2
ab,cosC=-
2
2

∴C=
4

又f(A)=
1
2
-
3
4
,∴
1
2
-
3
2
sin2A=
1
2
-
3
4
,sin2A=
1
2
,∴A=
π
12
,∴B=
π
6


由正弦定理,有
q
sin
π
12
=
b
sin
π
6
=
c
sin
4
,即
a
6
-
2
4
=
b
1
2
=
2
2
2
2
,解得 a=
6
-
2
,b=2.
∴S=
1
2
ab•sinC=
3
-1.…(12分)
点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,正弦定理及两个向量的数量积的定义,
属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案