精英家教网 > 高中数学 > 题目详情

函数数学公式


  1. A.
    {x|x≠5,x≠2}
  2. B.
    {x|x>2}
  3. C.
    {x|x>5}
  4. D.
    {x|2<x<5或x>5}
D
分析:根据题目中使函数有意义的x的值求得两个表达式的定义域,再求它们的交集即可.
解答:∵函数的定义域是指使函数式有意义的自变量x的取值范围,
所以:解得 2<x<5或x>5
所以函数的定义域为{x|2<x<5或x>5}
故选D.
点评:本题属于以函数的定义为平台,求集合的交集的基础题,也是高考常会考的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:福建省高考真题 题型:解答题

已知函数f(x)=|x-a|,
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:2011年四川省绵阳市高考数学二模试卷(理科)(解析版) 题型:选择题

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
A.[-5,5]
B.[-]
C.[-]
D.[-]

查看答案和解析>>

科目:高中数学 来源:2011年四川省绵阳市高考数学二模试卷(文科)(解析版) 题型:选择题

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
A.[-5,5]
B.[-]
C.[-]
D.[-]

查看答案和解析>>

同步练习册答案