精英家教网 > 高中数学 > 题目详情
精英家教网如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求二面角P-BC-A的大小.
分析:(1)取PD的中点M,由三角形的中位线定理,结合已知条件,易证明四边形MEBF是平行四边形,且BE∥MF,结合线面平行的判定定理,即可得到BE∥平面PDF;
(2)连接BD,由已知中底面ABCD是菱形,∠BAD=60°,可得△ABD为等边三角形,又由PA⊥平面ABCD,F是AB的中点,结合线面垂直的性质,及等边三角形“三线合一”可得:DF⊥AB,PA⊥DF,结合线面垂直的判定定理可得DF⊥平面PAB,再由面面垂直的判定定理,即可得到平面PDF⊥平面PAB;
(3)过点A做AH⊥CB延长线于H,可得∠PHA为二面角P-BC-A的平面角,解△PHA即可求出二面角P-BC-A的大小.
解答:证明:(1)取PD的中点M,
∵E是PC的中点
∴ME是△PCD的中位线
∴ME∥FB
∴四边形MEBF是平行四边形∴BE∥MF
∵BE?平面PDF,MF?平面PDF
∴BE∥平面PDF.
(2)连接BD,易得△ABD为等边三角形
又由F为AB的中点
∴DF⊥AB
又∵PA⊥平面ABCD,
∴PA⊥DF
又由PA∩AB=A
∴DF⊥平面PAB
又∵DF?平面PDF
∴平面PDF⊥平面PAB.
解:(3)过点A做AH⊥CB延长线于H,因为PA⊥面ABCD,所以PH⊥BC,既∠PHA为二面角P-BC-A的平面角,
在Rt△ABC中PA=1,AH=
3
,所以∠PHA=30°
既二面角P-BC-A的大小为30°.
点评:本题考查的知识点是直线与平面平行的判定,平面与平面垂直的判定,二面角的平面角及求法,其中(1)的关键是证得BE∥MF,(2)的关键是说不得DF⊥平面PAB,(3)的关键是确定出∠PHA为二面角P-BC-A的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图在四棱锥P-ABCD中,底ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
2
,E、F、G分别为AD、PC、PD的中点.
(1)求证:FG∥面ABCD
(2)求面BEF与面BAP夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点;PA=kAB(k>0),且二面角E-BD-C的平面角大于30°,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD为直角梯形.其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点
①若CD∥平面PBO 试指出O的位置并说明理由
②求证平面PAB⊥平面PCD
③若PD=BC=1,AB=2
2
,求P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,侧棱PD⊥平面ABCD,M,N分别是AB,PC的中点,底面ABCD是菱形,
(1)求证:MN∥平面PAD;
(2)求证:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=1,点M,N分别是PD,PB的中点.
(I)求证:PB∥平面ACM;
(II)求证:MN⊥平面PAC;
(III)若
PF
=2
FC
,求平面FMN与平面ABCD所成二面角的余弦值.

查看答案和解析>>

同步练习册答案