分析 双曲线的渐近线方程为:bx-ay=0,取AB中点为M,圆心C到M的距离丨CM丨=2$\sqrt{2}$,$\frac{b}{a}$=tan∠BAC=2$\sqrt{2}$,双曲线的离心率e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$,即可求得双曲线的离心率.
解答 解:由题意知,双曲线过第一、三象限的渐近线方程为bx-ay=0,取AB中点为M,如图所示,![]()
由勾股定理,可知圆心C(3,0),到M的距离丨CM丨=2$\sqrt{2}$,
∴$\frac{b}{a}$=tan∠BAC=2$\sqrt{2}$,
双曲线的离心率e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+8}$=3,
故答案为:3.
点评 本题考查双曲线的简单几何性质,考查勾股定理的应用及双曲线离心率的求法,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $-\frac{5}{6}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<1} | B. | {x|-2<x<2} | C. | {x|0<x<1} | D. | {x|1<x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | -sin1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,$\frac{1}{3}$] | C. | (0,$\frac{1}{6}$) | D. | ($\frac{1}{6}$,$\frac{1}{3}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com