(本小题满分13分)(注意:在试题卷上作答无效)
已知函数
的反函数为
,定义:若对给定的实数
,函数
与
互为反函数,则称
满足“
和性质”.
(1)判断函数
是否满足“1和性质”,并说明理由;
(2)若
,其中
满足“2和性质”,则是否存在实数a,使得
对任意的
恒成立?若存在,求出
的范围;若不存在,请说明理由.
(1)函数
不满足“1和性质”;
(2)当
使得
对任意的
恒成立
【解析】(1)首先搞清楚什么样的函数具有“
和性质”.本小题只要证明
与
互为反函数,即可说明y=f(x)满足“1和性质”.
(2)设函数
满足“2和性质”,再求出其反函数,根据
互为反函数,可求出k,b 的值.进而确定F(x),同时可研究其单调性.利用其单调性解
再转化为不等式恒成立问题解决.
(1)函数
的反函数是
,![]()
而
其反函数为
, 故函数
不满足“1和性质”;
......6分
(2)设函数
满足“2和性质”,![]()
![]()
,而
,得反函数![]()
由“2和性质”定义可知
=
对
恒成立,![]()
即函数
,
,在
上递减,......9分
所以假设存在实数
满足![]()
,即
对任意的
恒成立,它等价于
在
上恒成立.
,![]()
![]()
,易得
.而
知
所以
.综合以上有当
使得
对任意的
恒成立.......13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com