精英家教网 > 高中数学 > 题目详情
已知两条直线l1:mx+8y+n=0和l2:2x+my-1=0,试分别确定m、n的值,使:
(1)l1与l2相交于一点P(m,1);
(2)l1∥l2且l1过点(3,-1);
(3)l1⊥l2且l1在y轴上的截距为-1.
分析:(1)由于l1与l2相交于一点P(m,1),把点P(m,1)代入l1,l2的方程得m2+8+n=0,2m+m-1=0,联立解得即可.
(2)由于l1∥l2且l1过点(3,-1),根据平行线的斜率相等及点适合直线l1的方程可得
-
m
8
=-
2
m
3m-8+n=0
,解得即可;
(3)由l1⊥l2且l1在y轴上的截距为-1,当m=0时,l1的方程化为8y+n=0,l2的方程化为2x-1=0.可得-8+n=0,解得即可.而m≠0时,直线l1与l2不垂直.
解答:解:(1)由于l1与l2相交于一点P(m,1),把点P(m,1)代入l1,l2的方程得m2+8+n=0,2m+m-1=0,联立解得m=
1
3
,n=-
73
9

(2)∵l1∥l2且l1过点(3,-1),∴
-
m
8
=-
2
m
3m-8+n=0
,解得
m=4
n=-4
m=-4
n=20

(3)由l1⊥l2且l1在y轴上的截距为-1,当m=0时,l1的方程化为8y+n=0,l2的方程化为2x-1=0.
∴-8+n=0,解得n=8.∴m=0,n=8.
而m≠0时,直线l1与l2不垂直.
综上可知:m=0,n=8.
点评:本题考查了直线的平行、垂直与斜率的关系、直线相交问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两条直线l1:mx+8y+n=0和l2:2x+my-1+
n2
=0
.试确定m,n的值或取值范围,使:
(Ⅰ) l1⊥l2; 
(II) l1∥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:x+(1+m)y=2-m和l2:2mx+4y=-16,若l1和l2相互平行,则m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:3x+4y+2=0,l2:3x+4y+m=0之间的距离为2,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8.当m分别为何值时,l1与l2:

(1)相交?(2)平行?(3)垂直? 

查看答案和解析>>

同步练习册答案