精英家教网 > 高中数学 > 题目详情
若f(x)的最小正周期为2,并且f(x+2)=f(2-x)对一切实数x恒成立,则f(x)是(  )
A.奇函数
B.偶函数
C.既是奇函数,又是偶函数
D.既不是奇函数,又不是偶函数
∵f(x+2)=f(2-x)对一切实数x恒成立
∴f[(x+2)+2]=f[2-(x+2)]
∴f(-x)=f(x+4)
∵f(x)的最小正周期为2,
∴f(x+4)=f(x)
∴f(-x)=f(x)对一切实数x恒成立
∴f(x)是偶函数
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
=(
3
cosωx,sinωx)
b
=(sinωx,0),其中ω>0,记函数f(x)=(
a
+
b
)•
b
+k.
(1)若f(x)图象中相邻两条对称轴间的距离不小于
π
2
,求ω的取值范围.
(2)若f(x)的最小正周期为π,且当x∈[-
π
6
π
6
]
时,f(x)的最大值是
1
2
,求f(x)的解析式,并说明如何由y=sinx的图象变换得到y=f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2wx+
3
2
sin2wx-
1
2
(x∈R,w>0),若f(x)的最小正周期为2π.
(1)求f(x)的表达式和f(x)的单调递增区间;
(2)求f(x)在区间[-
π
6
6
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设周期函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为3,且f(1)>-2,f(2012)=m-
3
m
,则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(
3
cosωx,sinωx),
b
=(sinωx,0)
,其中ω>0,函数f(x)=(
a
+
b
)•
b
+k

(1)若f(x)图象申相邻两条对称轴间的距离不小于
π
2
,求ω的取值范围.
(2)若f(x)的最小正周期为π,且当x∈[-
π
6
π
6
]
时,f(x)的最大值是
1
2
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)的最小正周期为2,并且f(x+2)=f(2-x)对一切实数x恒成立,则f(x)是(  )

查看答案和解析>>

同步练习册答案