精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=a•4x-a•2x+1+1-b(a>0)在区间[1,2]上有最大值9和最小值1
(1)求a,b的值;
(2)若不等式f(x)-k•4x≥0在x∈[-1,1]上有解,求实数k的取值范围.

分析 (1)令t=2x∈[2,4],依题意知,y=at2-2at+1-b,t∈[2,4],由即可求得a、b的值.
(2)设2x=t,k≤$\frac{{t}^{2}-2t+1}{{t}^{2}}$=1-$\frac{2}{t}$+$\frac{1}{{t}^{2}}$,求出函数1-$\frac{2}{t}$+$\frac{1}{{t}^{2}}$的大值即可

解答 解:(1)令t=2x∈[2,4],
则y=at2-2at+1-b,t∈[2,4],
对称轴t=1,a>0,
∴t=2时,ymin=4a-4a+1-b=1,
t=4时,ymax=16a-8a+1-b=9,
解得a=1,b=0,
(2)4x-2•2x+1-k•4x≥0在x∈[-1,1]上有解
设2x=t,
∵x∈[-1,1],
∴t∈[$\frac{1}{2}$,2],
∵f(2x)-k.2x≥0在x∈[-1,1]有解,
∴t2-2t+1-kt2≥0在t∈[$\frac{1}{2}$,2]有解,
∴k≤$\frac{{t}^{2}-2t+1}{{t}^{2}}$=1-$\frac{2}{t}$+$\frac{1}{{t}^{2}}$,
再令$\frac{1}{t}$=m,则m∈[$\frac{1}{2}$,2],
∴k≤m2-2m+1=(m-1)2
令h(m)=m2-2m+1,
∴h(m)max=h(2)=1,
∴k≤1,
故实数k的取值范围(-∞,1].

点评 本题考查函数的单调性质的应用,考查等价转化思想与运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在锐角△ABC中,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$=2$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(1)求$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$的值;
(2)求cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=ax+1(a>0,a≠0)的图象恒过(-1,1)点,则反函数的图象恒过点(1,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集U={0,2,4,6,8,10},集合A={2,4,6},B={1},则(∁UA)∪B等于(  )
A.{0,1,8,10}B.{1,2,4,6}C.{0,8,10}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$a={log_3}\frac{1}{2}$,$b={({\frac{1}{2}})^3}$,$c={3^{\frac{1}{2}}}$,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列各式的值
(1)1.5${\;}^{-\frac{1}{3}}$×(-$\frac{7}{6}$)0+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6-$\sqrt{(-\frac{2}{3})^{\frac{2}{3}}}$
(2)2log32-log3$\frac{32}{9}+{log_3}8-{5^{2{{log}_5}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数$f(x)=\frac{ax}{{{x^2}+b}}$的图象如图所示,其中,当x=1时,函数f(x)取得最大值为1,则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数y=f(x)(x∈R)满足f(x+1)=-f(x),且当x∈[-1,0)时,$f(x)=\frac{{{x^2}+1}}{2}$,则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C:x2+y2=36,过点P(2,0)作圆C的任意弦.
(1)求这些弦的中点Q的轨迹方程.
(2)求y+x的最小值
(3)求$\frac{y}{x+12}$的最大值.

查看答案和解析>>

同步练习册答案