精英家教网 > 高中数学 > 题目详情
设f(x)=ax2+bx,1≤f(-1)≤2,2≤f(1)≤4.求f(-2)的取值范围.
分析:要求f(-2)的取值范围,解题的思路为:由f(x)关系式推出f(-2)与f(1)和f(-1)的关系,再利用f(1)和f(-1)的范围,即可得f(-2)的范围.
解答:解:法一:设f(-2)=mf(-1)+nf(1)(m、n为待定系数),
则4a-2b=m(a-b)+n(a+b).
即4a-2b=(m+n)a+(n-m)b.
于是得
m+n=4
n-m=-2

解得
m=3
n=1

∴f(-2)=3f(-1)+f(1).
又∵1≤f(-1)≤2,2≤f(1)≤4,
∴5≤3f(-1)+f(1)≤10,
故5≤f(-2)≤10.
点评:由a<f1(x1,y1)<b,c<f2(x1,y1)<d,求g(x1,y1)的取值范围,可利用待定系数法解决,即设g(x1,y1)=pf1(x1,y1)+qf2(x1,y1),用恒等变形求得p,q,再利用不等式的性质求得g(x1,y1)取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、设f(x)=ax2+bx+c(a≠0),对于任意-1≤x≤1,有f(x)|≤1;求证|f(2)|≤7.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+x-a,g(x)=2ax+5-3a
(1)若f(x)在x∈[0,1]上的最大值是
54
,求a的值;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围;
(3)若f(x)=g(x)在x∈[0,1]上有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定正数k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,设f(x)=ax2-2ax-a2+5a+2,对任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)设f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,则f(2)的最大值为
14
14

查看答案和解析>>

同步练习册答案