精英家教网 > 高中数学 > 题目详情

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.

(1)求f(π)的值; 

(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;

(3)写出(-∞,+∞)内函数f(x)的单调区间.

 

【答案】

(1)π-4.

(2)4

(3)递增区间为[4k-1,4k+1](k∈Z),单调递减区间[4k+1,4k+3](k∈Z)

【解析】

试题分析:解:(1)由f(x+2)=-f(x)得,

f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),

所以f(x)是以4为周期的周期函数,

∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.

(2)由f(x)是奇函数与f(x+2)=-f(x),得:f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).

故知函数y=f(x)的图象关于直线x=1对称.

又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.

当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则

S=4S△OAB=4×=4.

(3)根据(1)(2)可知函数的图形,根据奇偶性以及解析式和对称中心可知,

在一个周期[-1,3]内的图象可知增区间为[-1,1],减区间为[1,3],那么推广到整个实数域可知,都加上周期的整数倍即可,故可知函数f(x)的单调递增区间为[4k-1,4k+1](k∈Z),单调递减区间[4k+1,4k+3](k∈Z)

考点:函数图象与性质

点评:主要是考查了函数的图象与性质的综合运用,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义域为R,最小正周期为的函数,若f(x)=则f()等于(    )

A.1                B.                 C.0               D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是(-∞,+∞)上的奇函数,对任意实数x,都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3.

(1)试证:x=1是函数f(x)的一条对称轴;

(2)证明函数f(x)是以4为周期的函数,并求x∈[1,5]时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则实数a的取值范围是(    )

A.a<-1或a>                       B.-l<a<

C.a<                                D.a<且a≠-1

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练7练习卷(解析版) 题型:填空题

f(x)是以2为周期的函数,且当x[1,3),f(x)=x-2,f(-1)=    .

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三上学期期末考试文科数学 题型:选择题

设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有恒成立,则不等式 的解集是

A.(-2,0) ∪(2,+∞)   B.(-2,0) ∪(0,2)  C.(-∞,-2)∪(2,+∞)    D.(-∞,-2)∪(0,2)

 

查看答案和解析>>

同步练习册答案