精英家教网 > 高中数学 > 题目详情
若关于x的方程x4+ax3+ax2+ax+1=0有实数根,则实数a的取值范围为(  )
分析:关于x的方程x4+ax3+ax2+ax+1=0有实数根x≠0,两边除以x2,等价变形为二次方程后,然后利用分离变量法转化成值域问题即可解决.
解答:解:关于x的方程x4+ax3+ax2+ax+1=0有实数根x≠0,两边除以x2,得x2+
1
x2
+a(x+
1
x
)+a=0 ①,
设y=x+
1
x
,则|y|=|x|+
1
|x|
≥2,①变为 y2-2+ay+a=0有根.
分离变量得a=
2-y2
y+1
=
1
y+1
+1-y,在y≥2,或y≤-2时,函数a=
2-y2
y+1
=
1
y+1
+1-y是减函数,
当y=2时,a=-
2
3
;当y=-2时,a=2.
∴a≤-
2
3
,或a≥2,则实数a的取值范围为(-∞,-
2
3
]∪[2,+∞)

故选B.
点评:本题主要考查了函数的零点与方程根的关系,考查了函数的性质、二次函数等基本知识,考查了函数与方程思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•徐州模拟)若关于x的方程x4+ax3+ax2+ax+1=0有实数根,则实数a的取值范围为
(-∞,-
2
3
]∪[2,+∞)
(-∞,-
2
3
]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:填空题

若关于x的方程x4+ax3+ax2+ax+1=0有实数根,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市张家港外国语学校高二(上)周日数学试卷11(理科)(解析版) 题型:填空题

若关于x的方程x4+ax3+ax2+ax+1=0有实数根,则实数a的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2011年江苏省徐州市高三第三次质量检测数学试卷(解析版) 题型:填空题

若关于x的方程x4+ax3+ax2+ax+1=0有实数根,则实数a的取值范围为   

查看答案和解析>>

同步练习册答案