精英家教网 > 高中数学 > 题目详情
方程sinx=
x
2009π
的根的个数为______.
令 y=
x
2009π
,y=sinx,这两个方程的曲线交点的个数就是原方程实数解的个数.
由于直线 y=
x
2009π
的斜率为
1
2009π
,又-1≤sinx≤1,
所以仅当-2009π≤x≤2009π时,两图象有交点.
由函数y=sin的周期性,把闭区间[-2009π,2009π]分成
[-2009π,2(-1005+1)π,[2kπ,2(k+1)π],[2×1004π,2009π](k=-1004,-1003,…,-2,-1,0,1,2,…,1004),共1005个区间,
故实际交点有2010个.即原方程有2010个实数解.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湛江一模)下列四个论述:
(1)线性回归方程y=bx+a必过点(
.
x
.
y

(2)已知命题p:“?x∈R,x2≥0“,则命题¬p是“?x0∈R,
x
2
0
<0“
(3)函数f(x)=
x2(x≥1)
x(x<1)
在实数R上是增函数;
(4)函数f(x)=sinx+
4
sinx
的最小值是4
其中,正确的是
(1)(2)(3)
(1)(2)(3)
(把所有正确的序号都填上).

查看答案和解析>>

同步练习册答案