精英家教网 > 高中数学 > 题目详情
已知当x=5时,二次函数f(x)=ax2+bx+c取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}的前n项和为Tn,且bn=
an
2n
,证明Tn≤-
9
2
分析:(I)利用二次函数在对称轴处取得最小值列出关于a,b的等式;利用数列的通项与前n项和的关系得到通项的形式,利用已知条件a2=-7求出参数a的值,进一步得到数列{an}的通项公式.
(II)求出数列{bn}的通项,根据其通项是一个等差数列与一个等比数列的积构成,所以利用错位相减法求出前n项和
Tn,分n≤4和n>4进行证明.
解答:解:(Ⅰ)当n=1时,a1=S1=a+b+c,
当n≥2时,an=Sn-Sn-1=2an+b-a,
又a1适合上式,得2a+b-a=a+b+c,∴c=0.
由已知a2=4a+b-a=3a+b=-7,-
b
2a
=5

解方程组
3a+b=-7
-
b
2a
=5
a=1
b=-10

∴an=2n-11.
(Ⅱ)bn=
2n-11
2n

Tn=
-9
2
+
-7
22
+…+
2n-11
2n
1
2
Tn=…
-9
22
+…+
2n-13
2n
+
2n-11
2n+1

①-②得
1
2
Tn=-
9
2
+
2
22
+…+
2
2n
-
2n-11
2n+1

=-
9
2
+
1
2
(1-
1
2n-1
)
1-
1
2
-
2n-11
2n+1
=-
7
2
-
1
2n-1
-
2n-11
2n+1

Tn=-7-
2n-7
2n

T1=-
9
2
T2=-
9
2
-
7
2
<-
9
2
T3=-
9
2
-
7
2
-
5
2
<-
9
2

当n≥4时,
2n-7
2n
>0
,∴Tn=-7-
2n-7
2n
<-7<-
9
2

综上,得Tn≤-
9
2
点评:求数列的前n项和应该先求出数列的通项,根据数列通项的特点选择合适的求和方法.常见的求和方法有:公式法、倒序相加法、错位相减法、裂项相消法、分组法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>

科目:高中数学 来源:临沂三模 题型:解答题

已知当x=5时,二次函数f(x)=ax2+bx+c取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}的前n项和为Tn,且bn=
an
2n
,证明Tn≤-
9
2

查看答案和解析>>

科目:高中数学 来源:2010年4月山东省临沂市24中高三(下)二轮复习月考数学试卷(理科)(解析版) 题型:解答题

已知当x=5时,二次函数f(x)=ax2+bx+c取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}的前n项和为Tn,且,证明

查看答案和解析>>

科目:高中数学 来源:2013年山东省临沂市高考数学三模试卷(理科)(解析版) 题型:解答题

已知当x=5时,二次函数f(x)=ax2+bx+c取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}的前n项和为Tn,且,证明

查看答案和解析>>

同步练习册答案