精英家教网 > 高中数学 > 题目详情
5.数列{an}中,数列{an}的通项公式${a_n}=\frac{1}{n(n+1)}$,则该数列的前9项之和等于$\frac{9}{10}$.

分析 利用“裂项求和”可得Sn,即可得出.

解答 解:∵${a_n}=\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$,
令$\frac{n}{n+1}$=$\frac{9}{10}$,解得n=9.
∴该数列的前9项之和等于$\frac{9}{10}$.
故答案为:9.

点评 本题考查了“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,且,$\frac{sinβ}{sinα}$=cos(α+β),α+β≠$\frac{π}{2}$,则tanβ的最大值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,做成一个无盖的盒子,则盒子容积的最大值为(  )
A.160 cm3B.144cm3C.72cm3D.12 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=ex-x的单调递增区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C上的动点P到两定点O(0,0),A(3,0)的距离之比为$\frac{1}{2}$.
(1)求曲线C的方程;
(2)若直线l的方程为y=kx-2,其中k<-2,且直线l交曲线C于A,B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于任意的实数k,关于x的方程x2-5x+4=k(x-a)恒有两个不相等的实数根,则实数a的取值范围为1<a<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC中,角A、B、C的对边分别是a、b、c,a=2,函数f(x)=$\frac{1}{4}{x^3}-\frac{3}{4}$x的极大值是cosA.
(1)求A;  
(2)若S△ABC=$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)解关于x不等式(x-a)(x-1)<0.
(2)证明:(x+y)($\frac{1}{x}$+$\frac{1}{y}$)≥4(其中x>0,y>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\sqrt{3}ccos{A}=asinC$.
(1)若4sinC=c2sinB,求△ABC的面积;
(2)若$\overrightarrow{{A}{B}}•\overrightarrow{{A}C}=4$,求a的最小值.

查看答案和解析>>

同步练习册答案