分析 利用“裂项求和”可得Sn,即可得出.
解答 解:∵${a_n}=\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$,
令$\frac{n}{n+1}$=$\frac{9}{10}$,解得n=9.
∴该数列的前9项之和等于$\frac{9}{10}$.
故答案为:9.
点评 本题考查了“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 160 cm3 | B. | 144cm3 | C. | 72cm3 | D. | 12 cm3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com