精英家教网 > 高中数学 > 题目详情
18.命题p:?m∈R使得函数f(x)=m•2x+1有零点;命题q:?x∈($\frac{1}{2}$,+∞),x+log2x>0,则下列命题正确的是(  )
A.¬pB.p∧qC.(¬p)∨qD.p∧(¬q)

分析 先判断出p,q的真假,从而判断出其复合命题的真假即可.

解答 解:关于命题p:比如m=-1时:令f(x)=0,
即-2x+1=0,即2x=1,解得:x=0,
∴函数f(x)有零点,
故命题p正确;
关于命题q:x=$\frac{1}{2}$时:x+log2x=$\frac{1}{2}$-1<0,
故?x∈($\frac{1}{2}$,+∞),x+log2x>0是假命题,
故选:D.

点评 本题考查了复合命题的判断,考查函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+4.
(1)当a=-1时,求函数f(x)在区间[-2,2]上的最大值;
(2)若函数f(x)在区间[-2,1]上是单调函数,求实数a的取值范围;
(3)若函数f(x)在区间[-1,3]上有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C过点P(0,5),Q(4,3),且圆心C在直线x-y+3=0上.
(1)求圆C的方程;
(2)如图,过点P(4,0)做直线l与圆O:x2+y2=25交于点A,B,与圆C交于点M,N,若AB=MN,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[3m,m+2]上不单调,求实数m的取值范围;
(3)求函数f(x)在区间[t-1,t]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α是第三象限角,f(α)=$\frac{sin(\frac{3π}{2}-α)cos(\frac{π}{2}+α)tan(-α+π)}{tan(α-2π)sin(-α-π)}$.
(1)化简f(α);
(2)若cos($α-\frac{3π}{2}$)=$\frac{1}{5}$,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$不共线,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=m$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.O是平面α上一点,A、B、C是平面α上不共线三点,平面α内的动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\overrightarrow{AB}+\overrightarrow{AC})$,
(1)若$λ=\frac{1}{2}$时,$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的值.
(2)若AB=1,AC=2,$\overrightarrow{AP}•\overrightarrow{BC}$=1,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图1-41所示的是某几何体的主视图和左视图,则如图1-42所示的五个图形中可能是该几何体的俯视图的是1,2,3,4,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若A,B∈(0,$\frac{π}{2}$),且A+B>$\frac{π}{2}$,求证:cosA<sinB.

查看答案和解析>>

同步练习册答案