精英家教网 > 高中数学 > 题目详情

在圆心角为60°的扇形铁板OAB中,工人师傅要裁出一个面积最大的内接矩形,求此内接矩形的最大面积。

 

【答案】

=30°时,矩形的面积最大,其最大值是.

【解析】

试题分析:要找出内接矩形的长宽与面积S的关系,可采用引入第三个变量的办法,用表示矩形的长宽x,y,这样矩形的面积可以表示成的三角函数,通过的变化情况,得出S的最大值。

解:如图,设PQ=x,MP=y,则矩形面积S=xy

连接ON,令∠AON=,则y=Rsin

在三角形OMN中:由正弦定理得:

S=

故当=30°时,矩形的面积最大,其最大值是.

考点:本题主要考查正弦定理的应用,两角和与差的三角函数公式。

点评:分析几何图形的特征,可以发现,要找出内接矩形的长宽与面积S的关系,可采用引入第三个变量的办法,用表示矩形的长宽x,y,这样矩形的面积可以表示成的三角函数,通过的变化情况,得出S的最大值。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,现在要在一块半径为1m.圆心角为60°的扇形纸板AOB上剪出一个平行四边形MNPQ,使点P在AB弧上,点Q在OA上,点M,N在OB上,设∠BOP=θ.平行四边形MNPQ的面积为S.
(1)求S关于θ的函数关系式;
(2)求S的最大值及相应θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在半径为
3
、圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点(N,M)在OB上,设矩形PNMQ的面积为y,
(1)按下列要求写出函数的关系式:
 ①设PN=x,将y表示成x的函数关系式;
 ②设∠POB=θ,将y表示成θ的函数关系式;
(2)请你选用(1)中的一个函数关系式,求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为R、圆心角为60°的扇形AB弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点M,N在OB上,设∠BOP=θ,矩形PNMQ的面积记为S.
(1)求S与θ之间的函数关系式;
(2)求矩形PNMQ面积的最大值及相应的θ值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武昌区模拟)如图,在半径为
6
cm,圆心角为60°的扇形OAB中,点C为弧AB的中点,按如图截出一个内接矩形,则矩形的面积为
3
3
cm2

查看答案和解析>>

同步练习册答案